Skip to main content

Advertisement

Log in

Solving 3D boundary element problems using constrained iterative approach

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Some major challenges for geophysicists and structural geologists using three-dimensional boundary element method codes (3D-BEM) are: (1) reducing the amount of memory required to solve large and dense systems and (2) incorporation of inequality constraints such as traction inequality constraints (TIC) and displacement inequality constraints (DIC). The latter serves two purposes. First, for example, inequality constraints can be used to simulate frictional slip (using TIC). Second, these constraints can prevent element interpenetration while allowing opening mode (using DIC). We have developed a method that simultaneously incorporates both types of functionality of the inequality constraints. We show that the use of an appropriate iterative solver not only avoids the allocation of significant memory for solving the system (allowing very large model computation and simplifying parallelization on multi-core processors), but also admits interesting features such as natural incorporation of TICs and DICs. Compared to other techniques of contact management (e.g., Lagrange multipliers, penalty method, or complementarity problem), this new simple methodology, which does not use any incremental trial-and-error procedures, brings more flexibility, while making the system more stable and less subject to round-off errors without any computational overhead. We provide validations and comparisons of the inequality constraints implementation using 2D analytical and numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auzias, V.: Photoelastic modeling of stress perturbations near faults and of the associated fracturing: petroleum industry application, II: mechanism of 3d joint development in a natural reservoir analogue: the flat-lying devonian old red sandstone of Caithness (Scotland). Ph.D. thesis, Université de Montpellier II (1995)

  2. Bathe, K., Chaudary, A.: A solution method for planar and axisymmetric contact problems. Int. J. Numer. Methods Eng. 21, 65–88 (1985)

    Article  MATH  Google Scholar 

  3. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 86(4), 1–24 (2003)

    Article  MathSciNet  Google Scholar 

  4. Buczkowski, D., Cooke, M.: Compaction and shrinkage over buried impact craters: implications for thickness and nature of cover material in Utopia Planitia, Mars. J. Geophys. Res. 109 (2004). doi:10.1029/2003JE002144

    Article  Google Scholar 

  5. Burgmann, R., Pollard, D.D.: Slip distribution on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. J. Struct. Geol. 16(12), 1675–1690 (1994)

    Article  Google Scholar 

  6. Comninou, M., Dundurs, J.: The angular dislocation in a half space. J. Elast. 5(3), 203–216 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cooke, M.: Fracture localization along faults with spatially varying friction. J. Geophys. Res. 22, 425–434 (1997)

    Google Scholar 

  8. Cooke, M., Kameda, A.: Mechanical fault interaction within the Los Angeles basin: a two-dimensional analysis using mechanical efficiency. J. Geophys. Res. 107 (2002). doi:10.1029/2001JB000542

    Google Scholar 

  9. Cooke, M., Murphy, S.: Assessing the work budget and efficiency of fault systems using mechanical models. J. Geophys. Res. 109 (2004). doi:10.1029/2004JB002968

    Article  Google Scholar 

  10. Cooke, M., Pollard, D.: Bedding-plane slip in initial stages of fault-related folding. J. Struct. Geol. 19, 567–581 (1997)

    Article  Google Scholar 

  11. Cooke, M., Underwood, C.: Fracture termination and step-over at bedding interfaces due to frctional slip and interface opening. J. Struct. Geol. 23, 223–238 (2001)

    Article  Google Scholar 

  12. Cowie, P.A., Scholz, C.H.: Displacement-length scaling relationship for faults: data synthesis and discussion. J. Struct. Geol. 14, 1149–1156 (2003)

    Article  Google Scholar 

  13. Crouch, S.L., Starfield, A.M. (eds.): Boundary Element Methods in Solid Mechanics. Unwin Hyman, London (1983)

    MATH  Google Scholar 

  14. Dair, L., Cooke, M.L.: San Andreas fault topology through the San Gorgonio Pass, California. Geology 37, 119–122 (2009). doi:10.1130/G25101A.1

    Article  Google Scholar 

  15. Davatzes, N.C., Aydin, A.: The formation of conjugate normal fault systems in folded sandstone by sequential jointing and shearing. J. Geophys. Res. 108 (2003)

  16. De Bremaecker, J., Ferris, M.: A comparison of two algorithms for solving closed crack problems. Eng. Fract. Mech. 66, 601–605 (2000)

    Article  Google Scholar 

  17. Del Castello, M., Cooke, M.: The underthrusting-accretion cycle: work budget as revealed by the boundary element method. J. Geophys. Res. 112 (2007). doi:10.1029/2007JB004997

    Google Scholar 

  18. Eterovic, A., Bathe, K.: On the treatment of inequality constraints arising from contact conditions in finite element analysis. Comput. Struct. 40(2), 203–S209 (1991)

    Article  Google Scholar 

  19. Golub, G.H., Van Loan, C.F. (eds.): Matrix Computation. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  20. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hackbusch, W.: A sparse matrix arithmetic based on h-matrices: Part 1: introduction to h-matrices. Computing 62, 89–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hughes, T., Taylor, R., Sackman, A., Curnier, W.: A finite element method for a class of contact-impact problems. Comput. Methods Appl. Mech. Eng. 8, 249–276 (1976)

    Article  MATH  Google Scholar 

  23. Klarbring, A.: A mathematical programming approach to contact problems with friction. Comput. Struct. 58, 175–200 (1986)

    MATH  MathSciNet  Google Scholar 

  24. Klarbring, A., Bjorkman, G.: A mathematical programming approach to contact problems with friction and varying contact surface. Comput. Struct. 30, 1185–1198 (1988)

    Article  MATH  Google Scholar 

  25. Kwak, B., Lee, S.: A complementarity problem formulation for two-dimensional frictional contact problems. Comput. Struct. 28, 469–480 (1988)

    Article  MATH  Google Scholar 

  26. Maerten, F.: Adaptive cross approximation applied to the solution of system of equations and post-processing for 3d elastostatic problems using the boundary element method. Eng. Anal. Bound. Elem. (submitted)

  27. Maerten, F., Maerten, L.: Iterative 3d bem solver on complex faults geometry using angular dislocation approach in heterogeneous, isotropic elastic whole or half-space. In: Skerget, P., Brebbia, C.A. (eds.) Boundary Elements and other Mesh Reduction Methods XXX, pp. 201–208. BEM 30. WIT, Southampton (2008)

  28. Maerten, F., Resor, P.G., Pollard, D.D., Maerten, L.: Inverting for slip on three-dimensional fault surfaces using angular dislocations. Bull. Seismol. Soc. Am. 95, 1654–1665 (2005)

    Article  Google Scholar 

  29. Maerten, L.: Variation in slip on intersectiong normal faults: implications for paleostress inversion. J. Geophys. Res. 105(25), 553–565 (2000)

    Google Scholar 

  30. Man, K. (ed.): Contact Mechanics Using Boundary Elements. Computational Mechanics, Southampton (1994)

    MATH  Google Scholar 

  31. Martel, S.: Effects of cohesive zones on small faults and implications for secondary fracturing and fault trace geometry. J. Struct. Geol. 19, 835–847 (1997)

    Article  Google Scholar 

  32. Mijar, A., Arora, J.: Review of formulations for elastostatic frictional contact problems. Struct. Multidisc. Optim. 20, 167–189 (2000)

    Article  Google Scholar 

  33. Muller, J.R., Aydin, A., Maerten, F.: Investigating the transition between the 1967 Mudurnu Valley and 1999 Izmit earthquakes along the North Anatolian Fault with static stress changes. Geophys. J. Int. 154, 471–482 (2003)

    Article  Google Scholar 

  34. Ohlmacher, G.C., Aydin, A.: Mechanics of veins, fault and solution surface formation in the appalachian valley, U.S.A.: implications for fault friction, state of stress and fluid pressure. J. Struct. Geol. 19, 927–944 (1997)

    Article  Google Scholar 

  35. Phan, A.V., Napier, J.A.L., Gray, L.J., Kaplan, T.: Symmetric-Galerkin simulation of fracture with frictional contact. Int. J. Numer. Methods Eng. 57, 835–851 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Roering, J., Cooke, M., Pollard, D.: Why blind thrust faults don’t propagate to the earth’s surface: numerical modeling of coseismic deformation associated with thrust-related anticlines. J. Geophys. Res. 102, 901–912 (1997)

    Article  Google Scholar 

  37. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  38. Saad, Y. (ed.): Iterative Methods for Sparse Linear Systems. PWS, New York (1996)

    MATH  Google Scholar 

  39. Signorini, A. (ed.): Questioni de Elasticita non Linearizzata e Semi-Linearizzata. Rend de Matematica, Rome (1959)

    Google Scholar 

  40. Soliva, R., Maerten, F., Petit, J.P., Auzias, V.: Fault static friction and fracture orientation in extensional relays; insight from field data, photoelasticity and 3d numerical modeling. J. Struct. Geol. (special edn.) (submitted)

  41. Thomas, A.L.: Poly3d: a three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the earth’s crust. Master’s thesis, Stanford University (1993)

  42. Tse, S.T., Rice, J.R.: Crustal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res. 91, 9452–9472 (1986)

    Article  Google Scholar 

  43. Wriggers, P. (ed.): Computational Contact Mechanics. Wiley, New York (2002)

    Google Scholar 

  44. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhong, Z. (ed.): Finite Element Procedures for Contact-Impact Problems. Oxford University Press, Oxford (1993)

    Google Scholar 

  46. Zoback, M., Zoback, M., Mount, V.: New evidence on the state of stress of the San Andreas fault system. Science 238, 1105–1111 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frantz Maerten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maerten, F., Maerten, L. & Cooke, M. Solving 3D boundary element problems using constrained iterative approach. Comput Geosci 14, 551–564 (2010). https://doi.org/10.1007/s10596-009-9170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-009-9170-x

Keywords

Navigation