Computational Geosciences

, Volume 14, Issue 4, pp 551–564 | Cite as

Solving 3D boundary element problems using constrained iterative approach

Original Paper


Some major challenges for geophysicists and structural geologists using three-dimensional boundary element method codes (3D-BEM) are: (1) reducing the amount of memory required to solve large and dense systems and (2) incorporation of inequality constraints such as traction inequality constraints (TIC) and displacement inequality constraints (DIC). The latter serves two purposes. First, for example, inequality constraints can be used to simulate frictional slip (using TIC). Second, these constraints can prevent element interpenetration while allowing opening mode (using DIC). We have developed a method that simultaneously incorporates both types of functionality of the inequality constraints. We show that the use of an appropriate iterative solver not only avoids the allocation of significant memory for solving the system (allowing very large model computation and simplifying parallelization on multi-core processors), but also admits interesting features such as natural incorporation of TICs and DICs. Compared to other techniques of contact management (e.g., Lagrange multipliers, penalty method, or complementarity problem), this new simple methodology, which does not use any incremental trial-and-error procedures, brings more flexibility, while making the system more stable and less subject to round-off errors without any computational overhead. We provide validations and comparisons of the inequality constraints implementation using 2D analytical and numerical solutions.


3D-BEM Iterative solver Inequality constraints Friction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auzias, V.: Photoelastic modeling of stress perturbations near faults and of the associated fracturing: petroleum industry application, II: mechanism of 3d joint development in a natural reservoir analogue: the flat-lying devonian old red sandstone of Caithness (Scotland). Ph.D. thesis, Université de Montpellier II (1995)Google Scholar
  2. 2.
    Bathe, K., Chaudary, A.: A solution method for planar and axisymmetric contact problems. Int. J. Numer. Methods Eng. 21, 65–88 (1985)MATHCrossRefGoogle Scholar
  3. 3.
    Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 86(4), 1–24 (2003)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Buczkowski, D., Cooke, M.: Compaction and shrinkage over buried impact craters: implications for thickness and nature of cover material in Utopia Planitia, Mars. J. Geophys. Res. 109 (2004). doi:10.1029/2003JE002144 CrossRefGoogle Scholar
  5. 5.
    Burgmann, R., Pollard, D.D.: Slip distribution on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. J. Struct. Geol. 16(12), 1675–1690 (1994)CrossRefGoogle Scholar
  6. 6.
    Comninou, M., Dundurs, J.: The angular dislocation in a half space. J. Elast. 5(3), 203–216 (1975)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cooke, M.: Fracture localization along faults with spatially varying friction. J. Geophys. Res. 22, 425–434 (1997)Google Scholar
  8. 8.
    Cooke, M., Kameda, A.: Mechanical fault interaction within the Los Angeles basin: a two-dimensional analysis using mechanical efficiency. J. Geophys. Res. 107 (2002). doi:10.1029/2001JB000542 Google Scholar
  9. 9.
    Cooke, M., Murphy, S.: Assessing the work budget and efficiency of fault systems using mechanical models. J. Geophys. Res. 109 (2004). doi:10.1029/2004JB002968 CrossRefGoogle Scholar
  10. 10.
    Cooke, M., Pollard, D.: Bedding-plane slip in initial stages of fault-related folding. J. Struct. Geol. 19, 567–581 (1997)CrossRefGoogle Scholar
  11. 11.
    Cooke, M., Underwood, C.: Fracture termination and step-over at bedding interfaces due to frctional slip and interface opening. J. Struct. Geol. 23, 223–238 (2001)CrossRefGoogle Scholar
  12. 12.
    Cowie, P.A., Scholz, C.H.: Displacement-length scaling relationship for faults: data synthesis and discussion. J. Struct. Geol. 14, 1149–1156 (2003)CrossRefGoogle Scholar
  13. 13.
    Crouch, S.L., Starfield, A.M. (eds.): Boundary Element Methods in Solid Mechanics. Unwin Hyman, London (1983)MATHGoogle Scholar
  14. 14.
    Dair, L., Cooke, M.L.: San Andreas fault topology through the San Gorgonio Pass, California. Geology 37, 119–122 (2009). doi:10.1130/G25101A.1 CrossRefGoogle Scholar
  15. 15.
    Davatzes, N.C., Aydin, A.: The formation of conjugate normal fault systems in folded sandstone by sequential jointing and shearing. J. Geophys. Res. 108 (2003)Google Scholar
  16. 16.
    De Bremaecker, J., Ferris, M.: A comparison of two algorithms for solving closed crack problems. Eng. Fract. Mech. 66, 601–605 (2000)CrossRefGoogle Scholar
  17. 17.
    Del Castello, M., Cooke, M.: The underthrusting-accretion cycle: work budget as revealed by the boundary element method. J. Geophys. Res. 112 (2007). doi:10.1029/2007JB004997 Google Scholar
  18. 18.
    Eterovic, A., Bathe, K.: On the treatment of inequality constraints arising from contact conditions in finite element analysis. Comput. Struct. 40(2), 203–S209 (1991)CrossRefGoogle Scholar
  19. 19.
    Golub, G.H., Van Loan, C.F. (eds.): Matrix Computation. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)Google Scholar
  20. 20.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hackbusch, W.: A sparse matrix arithmetic based on h-matrices: Part 1: introduction to h-matrices. Computing 62, 89–108 (1999)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hughes, T., Taylor, R., Sackman, A., Curnier, W.: A finite element method for a class of contact-impact problems. Comput. Methods Appl. Mech. Eng. 8, 249–276 (1976)MATHCrossRefGoogle Scholar
  23. 23.
    Klarbring, A.: A mathematical programming approach to contact problems with friction. Comput. Struct. 58, 175–200 (1986)MATHMathSciNetGoogle Scholar
  24. 24.
    Klarbring, A., Bjorkman, G.: A mathematical programming approach to contact problems with friction and varying contact surface. Comput. Struct. 30, 1185–1198 (1988)MATHCrossRefGoogle Scholar
  25. 25.
    Kwak, B., Lee, S.: A complementarity problem formulation for two-dimensional frictional contact problems. Comput. Struct. 28, 469–480 (1988)MATHCrossRefGoogle Scholar
  26. 26.
    Maerten, F.: Adaptive cross approximation applied to the solution of system of equations and post-processing for 3d elastostatic problems using the boundary element method. Eng. Anal. Bound. Elem. (submitted)Google Scholar
  27. 27.
    Maerten, F., Maerten, L.: Iterative 3d bem solver on complex faults geometry using angular dislocation approach in heterogeneous, isotropic elastic whole or half-space. In: Skerget, P., Brebbia, C.A. (eds.) Boundary Elements and other Mesh Reduction Methods XXX, pp. 201–208. BEM 30. WIT, Southampton (2008)Google Scholar
  28. 28.
    Maerten, F., Resor, P.G., Pollard, D.D., Maerten, L.: Inverting for slip on three-dimensional fault surfaces using angular dislocations. Bull. Seismol. Soc. Am. 95, 1654–1665 (2005)CrossRefGoogle Scholar
  29. 29.
    Maerten, L.: Variation in slip on intersectiong normal faults: implications for paleostress inversion. J. Geophys. Res. 105(25), 553–565 (2000)Google Scholar
  30. 30.
    Man, K. (ed.): Contact Mechanics Using Boundary Elements. Computational Mechanics, Southampton (1994)MATHGoogle Scholar
  31. 31.
    Martel, S.: Effects of cohesive zones on small faults and implications for secondary fracturing and fault trace geometry. J. Struct. Geol. 19, 835–847 (1997)CrossRefGoogle Scholar
  32. 32.
    Mijar, A., Arora, J.: Review of formulations for elastostatic frictional contact problems. Struct. Multidisc. Optim. 20, 167–189 (2000)CrossRefGoogle Scholar
  33. 33.
    Muller, J.R., Aydin, A., Maerten, F.: Investigating the transition between the 1967 Mudurnu Valley and 1999 Izmit earthquakes along the North Anatolian Fault with static stress changes. Geophys. J. Int. 154, 471–482 (2003)CrossRefGoogle Scholar
  34. 34.
    Ohlmacher, G.C., Aydin, A.: Mechanics of veins, fault and solution surface formation in the appalachian valley, U.S.A.: implications for fault friction, state of stress and fluid pressure. J. Struct. Geol. 19, 927–944 (1997)CrossRefGoogle Scholar
  35. 35.
    Phan, A.V., Napier, J.A.L., Gray, L.J., Kaplan, T.: Symmetric-Galerkin simulation of fracture with frictional contact. Int. J. Numer. Methods Eng. 57, 835–851 (2003)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Roering, J., Cooke, M., Pollard, D.: Why blind thrust faults don’t propagate to the earth’s surface: numerical modeling of coseismic deformation associated with thrust-related anticlines. J. Geophys. Res. 102, 901–912 (1997)CrossRefGoogle Scholar
  37. 37.
    Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Saad, Y. (ed.): Iterative Methods for Sparse Linear Systems. PWS, New York (1996)MATHGoogle Scholar
  39. 39.
    Signorini, A. (ed.): Questioni de Elasticita non Linearizzata e Semi-Linearizzata. Rend de Matematica, Rome (1959)Google Scholar
  40. 40.
    Soliva, R., Maerten, F., Petit, J.P., Auzias, V.: Fault static friction and fracture orientation in extensional relays; insight from field data, photoelasticity and 3d numerical modeling. J. Struct. Geol. (special edn.) (submitted)Google Scholar
  41. 41.
    Thomas, A.L.: Poly3d: a three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the earth’s crust. Master’s thesis, Stanford University (1993)Google Scholar
  42. 42.
    Tse, S.T., Rice, J.R.: Crustal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res. 91, 9452–9472 (1986)CrossRefGoogle Scholar
  43. 43.
    Wriggers, P. (ed.): Computational Contact Mechanics. Wiley, New York (2002)Google Scholar
  44. 44.
    Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Zhong, Z. (ed.): Finite Element Procedures for Contact-Impact Problems. Oxford University Press, Oxford (1993)Google Scholar
  46. 46.
    Zoback, M., Zoback, M., Mount, V.: New evidence on the state of stress of the San Andreas fault system. Science 238, 1105–1111 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Frantz Maerten
    • 1
    • 2
  • Laurent Maerten
    • 1
  • Michele Cooke
    • 3
  1. 1.IGEOSS EuropeParc EuromedecineGrabelsFrance
  2. 2.University of Montpellier 2MontpellierFrance
  3. 3.230 Morill Science Center, Dept. of GeosciencesUniversity of MassachusettsAmherstUSA

Personalised recommendations