Computational Geosciences

, Volume 14, Issue 3, pp 435–449 | Cite as

HYTEC results of the MoMas reactive transport benchmark

Original paper


A specific benchmark has been developed by the French research group MoMas in order to improve numerical solution methods applied by reactive transport models, i.e., codes that couple hydrodynamic flow and mass transport in porous media with geochemical reactions. The HYTEC model has been applied to this benchmark exercise, and this paper summarizes some of the principal results. HYTEC is a general-purpose code, applied by industrials and research groups to a wide variety of domains, including soil pollution, nuclear waste storage, cement degradation, water purification systems, storage of CO2, and valorization of stabilized wastes. The code has been applied to the benchmark test-cases without any specific modification. Apart from the benchmark imposed output, additional information is provided to highlight the behavior of HYTEC specifically and the simulation results in particular.


Reactive transport HYTEC Benchmark Numerical methods MoMas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourgeat, A., Bryant, S., Carrayrou, J., Dimier, A., van Duijn, C.J., Kern, M., Knabner, P.: Benchmark reactive transport. Technical Report GDR MOMAS (2006)Google Scholar
  2. 2.
    Carrayrou, J., Lagneau, V.: The reactive transport benchmark proposed by GdR MoMaS. Presentation and first results. In: Eurotherm-81, Reactive Transport series, Albi (2007)Google Scholar
  3. 3.
    Carrayrou, J., Hoffmann, J., Knabner, P., Kräutle, S., de Dieuleveult, C., Erhel, J., van der Lee, J., Lagneau, V., Mayer, K.U., MacQuarrie, K.T.B: A synthesis of the MoMaS reactive transport results (2009, this issue)Google Scholar
  4. 4.
    Cochepin, B., Trotignon, L., Bildstein, O., Steefel, C.I., Lagneau, V., van der Lee, J.: Approaches to modelling coupled flow and reaction in a 2D cementation experiment. Adv. Water Resour. 31, 1540–1551 (2008)CrossRefGoogle Scholar
  5. 5.
    De Simoni, M., Carrera, J., Sánchez-Vila, X., Guadagnini, A.: A procedure for the solution of multicomponent reactive transport problems. Water Resour. Res 41, 16 (2005)Google Scholar
  6. 6.
    De Windt, L., Badreddine, R.: Modelling of long-term dynamic leaching tests applied to solidified/stabilised waste. Waste Manage. 27, 1638–1647 (2007)CrossRefGoogle Scholar
  7. 7.
    De Windt, L., Burnol, A., Montarnal, P., van der Lee, J.: Intercomparison of reactive transport models applied to UO2 oxidative dissolution and uranium migration. J. Contam. Hydrol. 61, 303–312 (2003)CrossRefGoogle Scholar
  8. 8.
    Lagneau, V.: R2D2—Reactive transport and waterflow on an odd dimension 2 grid, notice technique et vérification. Technical Report Mines ParisTech LMH/RD/03/05 (2003)Google Scholar
  9. 9.
    Lagneau, V.: Benchmark reactive transport GdR MoMaS, HYTEC Ecole des Mines de Paris. Technical Report Mines ParisTech R060915VLAG (2007)Google Scholar
  10. 10.
    Lagneau, V., van der Lee, J.: On the accuracy and efficiency of strongly coupled reactive transport models based on operator splitting: analytical solutions and test cases. Contaminant Hydrology (2009, in press)Google Scholar
  11. 11.
    Lasaga, A.C.: Kinetic theory of the Earth sciences. Princeton series in geochemistry, p. 811. Princeton University Press, Princeton (1998)Google Scholar
  12. 12.
    Lions, J., van der Lee, J., Guren, V., Bataillard, P., Laboudigue, A.: Zinc and cadmium mobility in a 5-year-old dredged sediment deposit: Experiments and modelling. J. Soils and Sediments 7, 207–215 (2007)CrossRefGoogle Scholar
  13. 13.
    Srinivasana, V., Clement, T.P.: Analytical solutions for sequentially coupled one-dimensional reactive transport problems. Part I: Mathematical derivations (2008)Google Scholar
  14. 14.
    Steefel, C.I., DePaoloa, D.J., Lichtner, P.C.: Reactive transport modeling: An essential tool and a new research approach for the Earth sciences. Earth and Planet. Sci Lett. 240, 539–558 (2005)CrossRefGoogle Scholar
  15. 15.
    Sun, Y., Glascoe, L.: Modeling biodegradation and reactive transport: analytical and numerical models. ACS Symposium Series 940, 153–174 (2006)CrossRefGoogle Scholar
  16. 16.
    van der Lee, J., Lagneau, V.: GDR MOMAS—benchmark reactive transport: HYTEC results of the medium and hard benchmark cases. Technical Report Mines ParisTech R080403JVDL (2008)Google Scholar
  17. 17.
    van der Lee, J.: Thermodynamic and mathematical concepts of CHESS. Technical Report Mines ParisTech LHM/RD/98/39 (1998)Google Scholar
  18. 18.
    van der Lee, J., De Windt, L., Lagneau, L., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29, 265–275 (2003)CrossRefGoogle Scholar
  19. 19.
    Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments in hydrogeochemical transport models of reactive multi-chemical components. Water Resour. Res. 25, 93–108 (1989)CrossRefGoogle Scholar
  20. 20.
    Zhao, C., Hobbs, B.E., Hornby, P., Ord, A., Peng, S., Liu, L.: Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Int. J. Numer. Anal. Methods in Geomech. 32, 1107–1130 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Mines ParisTechFontainebleau CedexFrance
  2. 2.The Materials Ageing Institute, EDF R&DMoret-sur-Loing CedexFrance

Personalised recommendations