Two-phase, partially miscible flow and transport modeling in porous media; application to gas migration in a nuclear waste repository

  • Alain Bourgeat
  • Mladen Jurak
  • Farid Smaï
Original paper


We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water-saturated repository.


Two-phase flow Porous medium Modeling Underground nuclear waste management 


  1. 1.
    Allen III, M.B.: Numerical modelling of multiphase flow in porous media. Adv. Water Resour. 8, 162–187 (1985)CrossRefGoogle Scholar
  2. 2.
    Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer, Dordrecht (1991)MATHGoogle Scholar
  3. 3.
    Chavent, G., Jaffré, J.,: Mathematical Models and Finite Elements for Reservoir Simulation. North-Holland, Helsinki (1986)MATHGoogle Scholar
  4. 4.
    Firoozabadi, A.: Thermodynamics of Hydrocarbon Reservoirs. McGraw-Hill, New York (1999)Google Scholar
  5. 5.
    Horseman, S.T., Higgo, J.J.W., Alexander, J., Harrington, J.F.: Water, gas and solute movement through argillaceous media. NEA Report CC-96/1, Paris, OECD (1996)Google Scholar
  6. 6.
    Jin, Y., Jury, W.A.: Characterizing the dependence of gas diffusion coefficient on soil properties. Soil Sci. Soc. Am. J. 60, 66–71 (1996)Google Scholar
  7. 7.
    Marle, C.M.: Multiphase Flow in Porous Media. Édition Technip (1981)Google Scholar
  8. 8.
    Millington, R.J., Shearer, R.C.: Diffusion in aggregated porous media. Soil Sci. 111(6), 372 (1971)CrossRefGoogle Scholar
  9. 9.
    Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier, Amsterdam (1977)Google Scholar
  10. 10.
    Pruess, K., Oldenburg, C., Moridis, G.: Tough2 User’s Guide, version 2.0. Lawrence Berkeley National Laboratory, Berkeley (1999)Google Scholar
  11. 11.
    Schlumberger, A.: ECLIPSE Technical Description (2005)Google Scholar
  12. 12.
    Van Genuchten, M.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)Google Scholar
  13. 13.
    Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)CrossRefGoogle Scholar
  14. 14.
    Wua, Y.-S., Forsyth, P.A.: On the selection of primary variables in numerical formulation for modeling multiphase flow in porous media. J. Contam. Hydrol. 48, 277–304 (2001)CrossRefGoogle Scholar
  15. 15.
  16. 16.

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Université de Lyon, Université Lyon1, CNRS UMR 5208 Institut Camille JordanVilleurbanne CedexFrance
  2. 2.Department of MathematicsUniversity of ZagrebZagrebCroatia

Personalised recommendations