Skip to main content
Log in

Artificial neural network and liquefaction susceptibility assessment: a case study using the 2001 Bhuj earthquake data, Gujarat, India

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This study pertains to prediction of liquefaction susceptibility of unconsolidated sediments using artificial neural network (ANN) as a prediction model. The backpropagation neural network was trained, tested, and validated with 23 datasets comprising parameters such as cyclic resistance ratio (CRR), cyclic stress ratio (CSR), liquefaction severity index (LSI), and liquefaction sensitivity index (LSeI). The network was also trained to predict the CRR values from LSI, LSeI, and CSR values. The predicted results were comparable with the field data on CRR and liquefaction severity. Thus, this study indicates the potentiality of the ANN technique in mapping the liquefaction susceptibility of the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krinitzsky, E.L., Hynes, M.E.: The Bhuj, India earthquake: lessons learnt for earthquake safety of dams on alluvium. Eng. Geol. 58, 193–202 (2002)

    Google Scholar 

  2. Ramakrishnan, D., Mohanty, K.K., Nayak, S.R.: Mapping the liquefaction induced soil moisture changes using remote sensing technique: an attempt to map the earth induced liquefaction around Bhuj, Gujarat, India. Geotech. Geolog. Eng. 24, 1581–1602 (2006)

    Article  Google Scholar 

  3. Singh, R., Roy, D., Jain, S.K.: Analysis of earth dams affected by the 2001 Bhuj Earthquake. Eng. Geol. 80, 282–291 (2005)

    Article  Google Scholar 

  4. Malik, J.N., Sohoni, P.S., Karanth, R.V., Merh, S.S.: Modern and historic seismicity of Kachchh Peninsula, Western India. J. Geol. Soc. India 54, 545–550 (1999)

    Google Scholar 

  5. Sitharam, T.G., Govindaraju, L.: Geotechnical aspects and ground response studies in Bhuj earthquake, India. Geotech. Geolog. Eng. 22, 439–455 (2004)

    Article  Google Scholar 

  6. Ramakrishnan, D., Jeyaram, A., Mohanty, K.K., Nayak, S.R.: Mapping the liquefaction susceptible zones in parts of Kachchh region using IRS_WiFS and LISS-III data. In: Proceedings of the International Workshop on Earth System Process Related to Gujarat Earthquake Using Space Technology, pp. 27–29, 50–51. Department of Civil Engineering, IIT, Kanpur, India (2003)

  7. Khandelwal, M., Roy, M.P., Singh, P.K.: Application of artificial neural network in mining industry. Indian Min. Eng. J. 43(7), 19–23 (2004)

    Google Scholar 

  8. Goh, A.T.C.: Empirical design in geotechnics using neural networks. Geotechnique 45(4), 709–714 (1995)

    MathSciNet  Google Scholar 

  9. Goh, A.T.C.: Seismic liquefaction potential assessed by neural networks. J. Geotech. Geoenviron. Eng. 120(9), 1467–1480 (1995)

    Google Scholar 

  10. Teh, C.L., Wong, K.S., Goh, A.T.C., Jaritngam, S.: Predicting settlement of shallow foundations using neural networks. J. Comput. Civ. Eng. 11(2), 129–138 (1997)

    Article  Google Scholar 

  11. Goh, A.T.C.: Neural network modeling of CPT seismic liquefaction data. J Geotech. Eng. 122(1), 70–73 (1996)

    Article  Google Scholar 

  12. Ural, D.N., Saka, H.: Liquefaction assessment by neural networks. Elect. J. Geotech. Eng. http://geotech.civen.okstate.edu/ejge/ppr9803/index.html (1998)

  13. Hanna, M.A., Ural, D., Saygili, G.: Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data. Int. J. Soil Dyn. Earthqu. Eng. 27(6), 521–540 (2007)

    Article  Google Scholar 

  14. Ishihara, K.: Liquefaction and flow failure during earthquakes. Geotechnique 43(3), 351–415 (1993)

    Article  Google Scholar 

  15. Chu, B.-L., Hsu, S.-C., Chang, Y.-M.: Ground behavior and liquefaction analyses in central Taiwan-Wufeng. Eng. Geol. 71, 119–139 (2003)

    Article  Google Scholar 

  16. Lee, D.-H., Ku, C.-S., Yuan, H.: A study of the liquefaction risk potential at Yuanlin, Taiwan. Eng. Geol. 71, 97–117 (2003)

    Article  Google Scholar 

  17. Yuan, H., Hiu Yang, S., Andrus, R.D., Hsein Juang, C.: Liquefaction induced ground failure: a study of the Chi-Chi earthquake cases. Eng. Geol. 17, 141–155 (2003)

    Google Scholar 

  18. Seed, H.B., Tokimatsu, K., Harder, L.F., Chung, R.M.: The influence of SPT procedures in soil liquefaction resistance evaluations. J. Geotech. Eng., ASCE. 111(12), 1425–1445 (1985), 16

    Article  Google Scholar 

  19. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., LiamFinn, W.D., Harder, L.F. Jr, Hynes, M.E., Ishihara, K., Koester, J.P., Laio, S.S.C., Marcuson, W.F. III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe, K.H. II: Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng. 127(10), 817–833 (2001)

    Article  Google Scholar 

  20. Seed, H.B., Idriss, I.M.: Simplified procedure for evaluating soil liquefaction potential. J. Soil Mech. Found Div., ASCE 97(SM9), 1249–1273 (1971), 14

    Google Scholar 

  21. Seed, H.B., Idriss, I.M., Arango, I.: Evaluation of liquefaction potential using field performance data. J. Geotech. Eng. 109, 458–482 (1983)

    Google Scholar 

  22. Youd, T.L., Perkins, D.M.: Mapping of liquefaction severity index. J. Geotech. Eng., ASCE. 113(11), 1374–1392 (1987), 17

    Google Scholar 

  23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representation by Error Propagation in Parallel Distributed Processing. Massachusetts Institute of Technology Press, Cambridge (1986)

    Google Scholar 

  24. Lippmann, R.P.: An introduction to computing with neural nets. IEEE Trans. Acoust. Speech Signal Process. 42, 4–22 (1987)

    Google Scholar 

  25. Flood, I., Kartam, N.: Neural networks in civil engineering. I: Principles and understanding. J. Comput. Civ. Eng., ASCE, 82, 131–148 (1994)

    Article  Google Scholar 

  26. Xia, Y.Y., Xie, Y.M., Zhu, R.G.: An engineering geology evaluation method based on an artificial neural network and its application. Eng. Geol. 47, 149–156 (1997)

    Article  Google Scholar 

  27. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing-Explorations in the Microstructure of Cognition 1/2. Massachusetts Institute of Technology Press, Cambridge (1986)

    Google Scholar 

  28. Widrow, B., Jovitz, M.C., Jacobi, G.T., Goldstein, G.: Generalization and information storage in networks of adaline neurons. In: Yovitz, M.C., Jacobi, G.T., Goldstein, G.D. (eds.) Self Organizing System, pp. 435–461. Spartan Books, Washington D.C. (1962)

  29. Hecht-Neilsen, R.: Counterpropagation networks. Appl. Opt. 26(23), 4979–4984 (1987)

    Google Scholar 

  30. Powell, M.J.D.: Restart procedures for the conjugate gradient method. Math. Program. 12, 241–254 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  31. Scales, L.E.: Introduction to Non-linear Optimization. Springer, New York (1985)

    Google Scholar 

  32. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic, New York (1981)

    MATH  Google Scholar 

  33. Battiti, R.: First and second order methods for learning; between steepest descent and Newton’s method. Neural Comput. 4(2), 141–166 (1992)

    Article  Google Scholar 

  34. Singh, T.N., Verma, A.K., Sharma, P.K.: A neuro-genetic approach for prediction of time dependent deformational characteristic of rock and its sensitivity analysis. Geotech. Geolog. Eng. 25, 395–407 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakrishnan, D., Singh, T.N., Purwar, N. et al. Artificial neural network and liquefaction susceptibility assessment: a case study using the 2001 Bhuj earthquake data, Gujarat, India. Comput Geosci 12, 491–501 (2008). https://doi.org/10.1007/s10596-008-9088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-008-9088-8

Keywords

Navigation