Computational Geosciences

, Volume 9, Issue 1, pp 1–27 | Cite as

Numerical simulation of ultrasonic waves in reservoir rocks with patchy saturation and fractal petrophysical properties

  • J. E. Santos
  • C. L. Ravazzoli
  • P. M. Gauzellino
  • J. M. Carcione


We simulate the propagation of ultrasonic waves in heterogeneous poroviscoelastic media saturated by immiscible fluids. Our model takes into account capillary forces and viscous and mass coupling effects between the fluid phases under variable saturation and pore fluid pressure. The numerical problem is solved in the space–frequency domain using a finite element procedure and the time–domain solution is obtained by a numerical Fourier transform. Heterogeneities due to fluid distribution and rock porosity–permeability are modeled as stochastic fractals, whose spectral densities reproduce saturation an petrophysical variations similar to those observed in reservoir rocks. The numerical experiments are performed at a central frequency of 500 kHz, and show clearly the effects of the different heterogeneities on the amplitudes of shear and compressional waves and the importance of wave mode conversions at the different interfaces.


finite elements porous media fractals reservoir geophysics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Arntsen and J.M. Carcione, Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner sandstone, Geophys. 66 (2001) 890–896. CrossRefGoogle Scholar
  2. [2]
    J. Bear, Dynamics of Fluids in Porous Media (Dover, New York, 1972). Google Scholar
  3. [3]
    J.G. Berryman, Elastic waves in fluid saturated porous media, in: Lecture Notes in Physics, Vol. 154 (Springer, Berlin, 1982) pp. 38–50. Google Scholar
  4. [4]
    M.A. Biot, Theory of deformation of a porous viscoelastic anisotropic solid, J. Appl. Phys. 27 (1956) 459–467. CrossRefGoogle Scholar
  5. [5]
    M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid I. Low frequency range, J. Acoust. Soc. Amer. 28 (1956) 168–171. Google Scholar
  6. [6]
    M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid II. High frequency range, J. Acoust. Soc. Amer. 28 (1956) 179–191. Google Scholar
  7. [7]
    M.A. Biot, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys. 33 (1962) 1482–1498. CrossRefGoogle Scholar
  8. [8]
    A. Brie, F. Pampuri, A. Marsala and O. Meazza, Shear sonic interpretation in gas-bearing sands, SPE Paper 30595 (1995) 701–710. Google Scholar
  9. [9]
    J.M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media (Pergamon Press, Amsterdam, 2001). Google Scholar
  10. [10]
    J.M. Carcione, F. Cavallini, J.E. Santos, C.L. Ravazzoli and P.M. Gauzellino, Wave propagation in partially saturated porous media: Simulation of a second slow wave, Wave Motion 39 (2004) 227–240. CrossRefMathSciNetGoogle Scholar
  11. [11]
    J.M. Carcione, H.B. Helle and N.H. Pham, White’s model for wave propagation in partially saturated rocks: Comparison with poroelastic numerical experiments, Geophys. 68 (2003) 1389–1398. CrossRefGoogle Scholar
  12. [12]
    J. Douglas, Jr., F. Furtado and F. Pereira, The statistical behavior of instabilities in immiscible displacement subject to fractal geology, in: Mathematical Modelling of Flow through Porous Media, eds. A. Bourgeat, C. Carasso, S. Luckhaus and A. Mikelic (World Scientific, Singapore, 1995) pp. 115–137. Google Scholar
  13. [13]
    J. Douglas, Jr., F. Furtado and F. Pereira, On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs, Comput. Geosci. 1 (1997) 155–190. CrossRefGoogle Scholar
  14. [14]
    J. Douglas, Jr., P.L. Paes Leme, J.E. Roberts and J. Wang, A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods, Numer. Math. 65 (1993) 95–108. CrossRefGoogle Scholar
  15. [15]
    J. Douglas, Jr., F. Pereira and J. Santos, A domain decomposition approach to the simulation of waves in dispersive media, in: Proc. of the 3rd Internat. Conf. on Wave Propagation Phenomena, ed. G. Cohen (SIAM, Philadelphia, PA, 1995) pp. 673–682. Google Scholar
  16. [16]
    J. Douglas, Jr., J.E. Santos and D. Sheen, Approximation of scalar waves in the space–frequency domain, Math. Models Methods Appl. Sci. 4 (1994) 509–531. CrossRefGoogle Scholar
  17. [17]
    J. Douglas, Jr., J.E. Santos and D. Sheen, Nonconforming Galerkin methods for the Helmholtz equation, Numer. Methods Partial Differential Equations 17 (2001) 475–494. CrossRefGoogle Scholar
  18. [18]
    J. Douglas, Jr., J.E. Santos, D. Sheen and L. Bennethum, Frequency domain treatment of one-dimensional scalar waves, Math. Models Methods Appl. Sci. 3 (1993) 171–194. CrossRefGoogle Scholar
  19. [19]
    J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems, RAIRO Math. Modeling Numer. Anal. 33 (1999) 747–770. CrossRefGoogle Scholar
  20. [20]
    N.C. Dutta and H. Odé, Seismic reflections from a gas–water contact, Geophys. 48 (1983) 148–162. CrossRefGoogle Scholar
  21. [21]
    J. Dvorkin, D. Moos, J. Packwood and A. Nur, Identifying patchy saturation from well logs, Geophys. 64 (1999) 1756–1759. CrossRefGoogle Scholar
  22. [22]
    J. Dvorkin and A. Nur, Acoustic signatures of patchy saturation, Internat. J. Solids Struct. 35 (1998) 4803–4810. CrossRefGoogle Scholar
  23. [23]
    A. Frankel and R.W. Clayton, Finite difference simulation of seismic wave scattering: implications for the propagation of short period seismic waves in the crust and models of crustal heterogeneity, J. Geophys. Res. 91 (1986) 6465–6489. Google Scholar
  24. [24]
    F. Gassmann, Über die Elastizität poröser Medien, Vierteljahrsschrift der Naturforschenden Gessellschaft in Zurich 96 (1951) 1–23. Google Scholar
  25. [25]
    P.M. Gauzellino, J.E. Santos and D. Sheen, Frequency domain wave propagation modeling in exploration seismology, J. Comput. Acoustics 9 (2001) 941–955. Google Scholar
  26. [26]
    T. Ha, J.E. Santos and D. Sheen, Nonconforming finite element methods for the simulation of waves in viscoelastic solids, Comput. Methods Appl. Mech. Engrg. 191 (2002) 5647–5670. CrossRefGoogle Scholar
  27. [27]
    H.B. Helle, N.H. Pham and J.M. Carcione, Velocity and attenuation in partially saturated rocks – Poroelastic numerical experiments, Geophys. Prospecting 51 (2003) 551–566. CrossRefGoogle Scholar
  28. [28]
    J.L. Hensley, J. Douglas, Jr. and J.E. Santos, Dispersion of type II Biot waves in inhomogeneous media, in: Proc. of the 6th Internat. Conf. on Mathematical Methods in Engineering, Czechoslovakia (1991) pp. 67–83. Google Scholar
  29. [29]
    J.M. Hovem and G.D. Ingram, Viscous attenuation of sound in saturated sand, J. Acoust. Soc. Amer. 66 (1979) 1807–1812. Google Scholar
  30. [30]
    O. Kelder and D. Smeulders, Observation of the Biot slow wave in water-saturated Nivelsteiner sandstone, Geophys. 62 (1997) 1794–1796. CrossRefGoogle Scholar
  31. [31]
    R. Knight, J. Dvorkin and A. Nur, Acoustic signatures of partial saturation, Geophys. 63 (1998) 132–138. CrossRefGoogle Scholar
  32. [32]
    H.P. Liu, D.L. Anderson and H. Kanamori, Velocity dispersion due to anelasticity; implications for seismology and mantle composition, Geophys. J. Roy. Astr. Soc. 47 (1976) 41–58. Google Scholar
  33. [33]
    J.C. Nedelec, Mixed finite elements in R3, Numer. Math. 35 (1980) 315–341. CrossRefGoogle Scholar
  34. [34]
    H. Pape, C. Clauser and J. Iffland, Permeability prediction based on fractal pore-space geometry, Geophys. 64 (1999) 1447–1460. CrossRefGoogle Scholar
  35. [35]
    D.W. Peaceman, Fundamentals of Numerical Reservoir Simulation (Elsevier, Amsterdam, 1977). Google Scholar
  36. [36]
    C.L. Ravazzoli, J.E. Santos and J.M. Carcione, Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure, J. Acoust. Soc. Amer. 113 (2003) 1801–1811. CrossRefGoogle Scholar
  37. [37]
    P.A. Raviart and J.M. Thomas, Mixed finite element method for 2nd order elliptic problems, in: Mathematical Aspects of the Finite Element Methods, Lecture Notes in Mathematics, Vol. 606 (Springer, New York, 1975). Google Scholar
  38. [38]
    J.E. Santos, J.M. Corberó, C.L. Ravazzoli and J.L. Hensley, Reflection and transmission coefficients in fluid saturated porous media, J. Acoust. Soc. Amer. 91 (1992) 1911–1923. Google Scholar
  39. [39]
    J.E. Santos, J. Douglas, Jr. and J. Corberó, Static and dynamic behaviour of a porous solid saturated by a two-phase fluid, J. Acoust. Soc. Amer. 87 (1990) 1428–1438. Google Scholar
  40. [40]
    J.E. Santos, J. Douglas, Jr., J.M. Corberó and O.M. Lovera, A model for wave propagation in a porous medium saturated by a two-phase fluid, J. Acoust. Soc. Amer. 87 (1990) 1439–1448. Google Scholar
  41. [41]
    J.E. Santos, P.M. Gauzellino and C.L. Ravazzoli, Numerical simulation of waves in poroviscoelastic rocks saturated by immiscible fuids, in: Mecánica Computacional, Vol. 21, eds. S.R. Idelsohn, V.E. Sonzogni and A. Cardona (2002) pp. 652–669. Google Scholar
  42. [42]
    J.E. Santos, C.L. Ravazzoli, P.M. Gauzellino, J.M. Carcione and F. Cavallini, Simulation of waves in poro-viscoelastic rocks saturated by inmiscible fluids. Numerical evidence of a second slow wave, J. Comput. Acoustics 12 (2004) 1–21. CrossRefGoogle Scholar
  43. [43]
    A.E. Scheidegger, The Physics of Flow through Porous Media (Univ. of Toronto, Toronto, 1974). Google Scholar
  44. [44]
    D. Sheen, Finite element methods for an acoustic well-logging problem associated with a porous medium saturated by a two-phase immiscible fluid, Numer. Methods Partial Differential Equations 9 (1993) 155–174. MathSciNetGoogle Scholar
  45. [45]
    J.E. White, Computed seismic speeds and attenuation in rocks with partial gas saturation, Geophys. 40 (1975) 224–232. CrossRefGoogle Scholar
  46. [46]
    J. Yarus and R. Chambers, Stochastic modeling and geostatistics. Principles, methods and case studies, in: AAPG Computer Applications in Geology 64 (1995). Google Scholar
  47. [47]
    H. Yin, Acoustic velocity and attenuation of rocks: isotropy, intrinsic anisotropy and stress-induced anisotropy, Ph.D. thesis, Stanford University (1993). Google Scholar
  48. [48]
    F.I. Zyserman, P.M. Gauzellino and J.E. Santos, Dispersion analysis of a non-conforming finite element method for the Helmholtz and elastodynamic equations, Internat. J. Numer. Methods Engrg. 58 (2003) 1381–1395. CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • J. E. Santos
    • 1
    • 2
    • 3
  • C. L. Ravazzoli
    • 1
    • 2
  • P. M. Gauzellino
    • 1
  • J. M. Carcione
    • 4
  1. 1.Departamento de Geofísica Aplicada, Facultad de Ciencias Astronómicas y GeofísicasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.CONICETArgentina
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA
  4. 4.Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS)TriesteItaly

Personalised recommendations