Advertisement

Colloid Journal

, Volume 67, Issue 6, pp 764–768 | Cite as

Surface Forces in Nanodispersions

  • N. V. Churaev
  • V. D. Sobolev
Article

Abstract

The stability of nanodispersions are analyzed on the basis of data on interaction forces between nanoparticles calculated using more precise (than Derjaguin's approximation) approaches. When calculating the dispersion attraction between nanoparticles in dispersions, we use Mitchell and Ninham equations for the case of small (compared to particle radii) interlayer thickness. For the calculation of electrostatic interaction in nanodispersions, the approximation of low potentials of particle surfaces developed by McCartney and Levine are employed. Estimates based on more precise approaches demonstrate that the energy of electrostatic repulsion between particles lowers with a decrease in their sizes (other conditions being equal) that can bring a nanodisperse system closer to the coagulation threshold.

Keywords

Polymer Thin Film Electrostatic Interaction Particle Surface Electrostatic Repulsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Surface Forces, New York: Consultants Bureau, 1987.Google Scholar
  2. 2.
    Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Mosk. Gos. Univ., 1982.Google Scholar
  3. 3.
    Fridrikhsberg, D.A., Kurs kolloidnoi khimii (Textbook of Colloid Chemistry), Leningrad: Khimiya, 1984.Google Scholar
  4. 4.
    Frolov, Yu.G., Kurs kolloidnoi khimii (Textbook of Colloid Chemistry), Moscow: Khimiya, 1989.Google Scholar
  5. 5.
    Derjaguin, B.V., Zh. Fiz. Khim., 1935, vol. 6, no.10, p. 1306.Google Scholar
  6. 6.
    Derjaguin, B.V., Izv. Akad. Nauk SSSR, Ser. Khim., 1937, no. 5, p. 1153.Google Scholar
  7. 7.
    McCartney, L.N. and Levine, S., J. Colloid Interface Sci., 1969, vol. 30, p. 345.CrossRefGoogle Scholar
  8. 8.
    Van Kampen, N.G., Nijboer, B.R.A., and Schram, K., Phys. Lett. A, 1968, vol. 26, no.3, p. 307.Google Scholar
  9. 9.
    Casimir, H.B. and Polder, D., Phys. Rev., 1948, vol. 73, no.1, p. 36.Google Scholar
  10. 10.
    Barash, Yu.S. and Ginzburg, V.L., Pis'ma Zh. Eksp. Teor. Fiz., 1972, vol. 15, no.9, p. 567.Google Scholar
  11. 11.
    Mitchell, D.J. and Ninham, B.W., J. Chem. Phys., 1972, vol. 56, no.3, p. 1117.CrossRefGoogle Scholar
  12. 12.
    Fernandes-Varea, J.M. and Garcia-Molina, R., J. Colloid Interface Sci., 2000, vol. 231, no.2, p. 394.Google Scholar
  13. 13.
    Krupp, H., Adv. Colloid Interface Sci., 1967, vol. 1, no.2, p. 111.Google Scholar
  14. 14.
    Rabinovich, Ya.I. and Churaev, N.V., Kolloidn. Zh., 1975, vol. 41, no.3, p. 468.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • N. V. Churaev
    • 1
  • V. D. Sobolev
    • 1
  1. 1.Institute of Physical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations