Colloid Journal

, Volume 67, Issue 3, pp 385–391 | Cite as

Secondary Structure of Globular Proteins in Adsorption Layers at the Solution-Air Interface by the Data of Fourier Transform IR Spectroscopy

  • G. P. Yampolskaya
  • B. N. Tarasevich
  • A. A. Elenskii


The secondary structures of globular proteins of different structural types (α, (α + β), and β) are studied in the adsorption layers at the solution-air interface using Fourier transform infrared spectroscopy. Similar investigations are performed for the initial proteins in a powdered state; these data are used as a control. It is shown that, at the water-air interface, either the secondary structure of the studied proteins changes insignificantly or remains intact depending on the structural type of a protein. The adsorption of proteins of the α-helical type (bovine and human serum albumins) and the (α + β) type (lysozyme) virtually do not result in changes in their secondary structure. A protein of β-structural type, α-chymotrypsin, shows a lower stability at the water-air interface.


Fourier Transform Fourier Transform Infrared Spectroscopy Secondary Structure Lysozyme Human Serum Albumin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Izmailova, V.N., Yampolskaya, G.P., and Summ, B.D., Poverkhnostnye yavleniya v belkovykh sistemakh (Surface Phenomena in Protein Systems), Moscow: Khimiya, 1988.Google Scholar
  2. 2.
    Claesson, P., Blomberg, E., and Nylander, T., Adv. Colloid Interface Sci., 1995, vol. 57, p. 161.Google Scholar
  3. 3.
    Lu, J.R., Su, T.J., Thomas, R.K., et al., J. Chem. Soc., Faraday Trans., 1998, vol. 94, no.21, p. 3279.Google Scholar
  4. 4.
    Relkin, P. and Vermesh, J., in Food Colloids, Dickinson, E. and Miller, R., Eds., Cambridge: The Royal Society of Chemistry, 2001, p. 282.Google Scholar
  5. 5.
    Byler, D.M. and Susi, H., Biopolymers, 1986, vol. 25, p. 469.PubMedGoogle Scholar
  6. 6.
    Pepe, I., Ram, M.K., Paddeu, S., and Nicolini, C., Thin Solid Films, 1998, vols. 327–329, p. 118.Google Scholar
  7. 7.
    Methot, M., Boucher, F., Salesse, C., et al., Thin Solid Films, 1996, vols. 284–285, p. 627.Google Scholar
  8. 8.
    Buijs, J. and Norde, W., Langmuir, 1996, vol. 12, p. 1605.Google Scholar
  9. 9.
    Bentaleb, A., Abele, A., Haikel, Y., et al., Langmuir, 1998, vol. 14, p. 6493.Google Scholar
  10. 10.
    Brandenburg, K., Harris, F., and Dennison, S., Eur. J. Biochem., 2002, vol. 249, p. 5414.Google Scholar
  11. 11.
    Yampolskaya, G.P., Zadymova, N.M., Belovodova, E.N., and Tulovskaya, Z.N., Abstracts of Papers, European Chemistry at Interfaces Conference, Moscow: UNTs DO, 2003, p. 49.Google Scholar
  12. 12.
    Langmuir, I., J. Am. Chem. Soc., 1915, vol. 37, p. 1139.Google Scholar
  13. 13.
    Langmuir, I. and Schaefer, V.J., J. Am. Chem. Soc., 1938, vol. 60, p. 1351.Google Scholar
  14. 14.
    Jabs, A., Image Library of Biological Macromolecules, 2000.Google Scholar
  15. 15.
    Griebenow, K., Santos, M.A., and Carrasquillo, K.G.,, 1999.Google Scholar
  16. 16.
    Protein Data Base. Scholar
  17. 17.
    Haynes, C. and Norde, W., Colloids Surf., B, 1994, vol. 2, p. 517.Google Scholar
  18. 18.
    Grdadolnik, J., Int. J. Vib. Spectrosc., 2002, vol. 6, p. 6.Google Scholar
  19. 19.
    Rirktoft, J.J. and Blow, D.M., J. Mol. Biol., 1972, vol. 68, p. 187.PubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • G. P. Yampolskaya
    • 1
  • B. N. Tarasevich
    • 1
  • A. A. Elenskii
    • 1
  1. 1.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations