Colloid Journal

, Volume 67, Issue 2, pp 123–133 | Cite as

Metal nanoparticles on polymer surfaces: 4. Preparation and structure of colloidal gold films

  • O. V. Dement’eva
  • M. E. Kartseva
  • A. V. Bol’shakova
  • O. F. Vereshchagina
  • V. A. Ogarev
  • M. A. Kalinina
  • V. M. Rudoy


The process of the enlargement of gold hydrosol nanoparticles adsorbed on the surfaces of glassy polymers (polystyrene and poly(2-vinylpyridine)) in mixed aqueous solution of chloroauric acid and hydroxylamine is studied. It is established that the character of this process depends on the intensity of metal-polymer interaction and the density of nanoparticle packing in an initial monolayer. At a high coverage of a poly(2-vinylpyridine) surface by “ seeding” gold particles, their rather uniform growth is observed, whereas, at low coverage, the enlargement of adsorbed particles, as well as the nucleation and growth of new particles take place. At the same time, new Au nanoparticles are not formed on the polystyrene surface in the enlargement process, even at low coverages by preliminarily deposited “seeding” hydrosol particles. Adsorbed gold particles can also be enlarged after their preliminary incorporation into the polystyrene surface layer. Such an incorporation (partial embedding) is ensured by the annealing of a system at a temperature between “surface” (Tg) and “ bulk” glass transition temperatures. In this case, the Tg value can be considerably decreased (up to room temperature) by the addition of small amounts of a homologue with a much lower molecular mass in the polystyrene matrix. Lateral conductivity of colloidal Au films formed on a poly(2-vinylpyridine) surface by the enlargement of adsorbed seeding particles is measured. According to these measurements, contacts providing the formation of conductive channels are formed in the process of nanoparticle enlargement.


Glass Transition Temperature Gold Particle Hydroxylamine Colloidal Gold Lower Molecular Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lyon, L.A., Pena, D.J., and Natan, M.J., J. Phys. Chem., 1999, vol. 103, p. 5826.Google Scholar
  2. 2.
    Maxwell, D.J., Emory, S.R., and Nie, S., Chem. Mater., 2001, vol. 13, p. 1082.Google Scholar
  3. 3.
    Roldughin, V.I., Usp. Khim., 2004, vol. 73, p. 123.Google Scholar
  4. 4.
    Pattabi, M., Rao, K.M., Sainkar, S.R., and Sastry, M., Thin Solid Films, 1999, vol. 338, p. 40.Google Scholar
  5. 5.
    Kovacs, G.J. and Vincett, P.S., J. Colloid Interface Sci., 1982, vol. 90, p. 335.Google Scholar
  6. 6.
    Stepanov, A.L., Abdullin, S.N., and Khaibullin, I.B., J. Non-Cryst. Solids, 1998, vol. 223, p. 250.Google Scholar
  7. 7.
    Zaporojtchenko, V., Strunskus, T., Behnke, K., et al., J. Adhes. Sci. Technol., 2000, vol. 14, p. 467.Google Scholar
  8. 8.
    Sato, T., Hasko, D.G., and Ahmed, H., J. Vac. Sci. Technol., 1997, vol. 15, p. 45.Google Scholar
  9. 9.
    Doron, A., Joselevich, E., Schlittner, A., and Willner, I., Thin Solid Films, 1999, vol. 340, p. 183.Google Scholar
  10. 10.
    Kooij, E.S., Wormeester, H., Brouwer, E.A.M., et al., Langmuir, 2002, vol. 18, p. 4401.Google Scholar
  11. 11.
    Bhat, R.R., Fisher, D.A., and Genzer, J., Langmuir, 2002, vol. 18, p. 5640.Google Scholar
  12. 12.
    Schmitt, J., Machtle, P., Eck, D., et al., Langmuir, 1999, vol. 15, p. 3256.Google Scholar
  13. 13.
    Zhu, T., Fu, X., Mu, T., et al., Langmuir, 1999, vol. 15, p. 5197.Google Scholar
  14. 14.
    Liu, Y., Wang, Y., and Claus, R.O., Chem. Phys. Lett., 1998, vol. 298, p. 315.Google Scholar
  15. 15.
    Jiang, C., Markutsya, S., and Tsukruk, V.V., Langmuir, 2004, vol. 20, p. 882.PubMedGoogle Scholar
  16. 16.
    Malynych, S., Luzinov, I., and Chumanov, G., J. Phys. Chem., B, 2002, vol. 106, p. 1280.Google Scholar
  17. 17.
    Li, W., Xu, R., Wang, L., et al., Mol. Cryst. Liq. Cryst. Sci. Technol., A, 1999, vol. 337, p. 185.Google Scholar
  18. 18.
    Kim, B., Tripp, S.L., and Wei, A., J. Am. Chem. Soc., 2001, vol. 123, p. 7955.PubMedGoogle Scholar
  19. 19.
    Swami, A., Kumar, A., Selvakannan, P.R., et al., J. Colloid Interface Sci., 2003, vol. 260, p. 367.PubMedGoogle Scholar
  20. 20.
    Kunz, M.S., Shull, K.R., and Kellock, A.J., J. Colloid Interface Sci., 1993, vol. 156, p. 240.Google Scholar
  21. 21.
    Shull, K.R. and Kellock, A.J., J. Polym. Sci., Part B: Polym. Phys., 1995, vol. 33, p. 1417.Google Scholar
  22. 22.
    Sukhov, V.M., Dement’eva, O.V., Kartseva, M.E., et al., Kolloidn. Zh., 2004, vol. 66, p. 539.Google Scholar
  23. 23.
    Brown, K.R. and Natan, M.J., Langmuir, 1998, vol. 14, p. 726.Google Scholar
  24. 24.
    Brown, K.R., Walter, D.G., and Natan, M.J., Chem. Mater., 2000, vol. 12, p. 306.Google Scholar
  25. 25.
    Jana, N., Gearheart, L., and Murphy, C.J., Langmuir, 2001, vol. 17, p. 6782.Google Scholar
  26. 26.
    Wei, Z., Mieszawska, A.J., and Zamborini, F.P., Langmuir, 2004, vol. 20, p. 4322.Google Scholar
  27. 27.
    Brown, K.R., Lyon, L.A., Fox, A.P., et al., Chem. Mater., 2000, vol. 12, p. 314.Google Scholar
  28. 28.
    Musick, M.D., Pena, D.J., Botsko, S.L., et al., Langmuir, 1999, vol. 15, p. 844.Google Scholar
  29. 29.
    Hrapovic, S., Liu, Y., Enright, G., et al., Langmuir, 2003, vol. 19, p. 3958.Google Scholar
  30. 30.
    Meltzer, S., Resch, R., Koel, B.E., et al., Langmuir, 2001, vol. 17, p. 1713.Google Scholar
  31. 31.
    Rivas, L., Sanchez-Cortes, S., Garcia-Ramos, J.V., and Morcillo, G., Langmuir, 2001, vol. 17, p. 574.Google Scholar
  32. 32.
    Kim, J.H., Jang, J., and Zin, W.-C., Langmuir, 2000, vol. 16, p. 4064.Google Scholar
  33. 33.
    Keddie, J.L., Jones, R.A., and Cory, R.A., Faraday Discuss. Chem. Soc., 1994, vol. 98, p. 219.Google Scholar
  34. 34.
    Meyers, G.F., DeKoven, B.M., and Seitz, J.T., Langmuir, 1992, vol. 8, p. 2330.Google Scholar
  35. 35.
    Kajiyama, T., Tanaka, K., and Takahara, A., Polymer, 1998, vol. 39, p. 4665.Google Scholar
  36. 36.
    Satomi, N., Takahara, A., and Kajiyama, T., Macromolecules, 1999, vol. 32, p. 4474.Google Scholar
  37. 37.
    Rudoy, V.M., Dement’eva, O.V., Yaminskii, I.V., et al., Kolloidn. Zh., 2002, vol. 64, p. 823.Google Scholar
  38. 38.
    Tichroeb, J.H. and Forrest, J.A., Phys. Rev. Lett., 2003, vol. 91, p. 016 104.Google Scholar
  39. 39.
    Zhang, Y., Zhang, J., Lu, Y., et al., Macromolecules, 2004, vol. 37, p. 2532.Google Scholar
  40. 40.
    Zhang, X., Tasaka, S., and Inagaki, N., J. Polym. Sci., Part B: Polym. Phys., 1999, vol. 38, p. 654.Google Scholar
  41. 41.
    Tanaka, K., Takahara, A., and Kajiyama, T., Macromolecules, 1997, vol. 30, p. 6626.Google Scholar
  42. 42.
    Rudoy, V.M., Bol’shakova, A.V., Dement’eva, O.V., et al., Struktura i dinamika molekulyarnykh sistem (Structure and Dynamics of Molecular Systems), Kazan: Kazan. Gos. Univ., 2004, issue 11, pt. 3, p. 44.Google Scholar
  43. 43.
    Hariharan, A., Kumar, S.K., and Russell, T.P., Macromolecules, 1990, vol. 23, p. 3584.Google Scholar
  44. 44.
    Wattenbarger, M.R., Chan, H.S., and Evans, D.F., J. Chem. Phys., 1990, vol. 93, p. 8343.Google Scholar
  45. 45.
    Kajiyama, T., Tanaka, K., and Takahara, A., Macromolecules, 1998, vol. 31, p. 3746.Google Scholar
  46. 46.
    Zsigmondy, R., Kolloidchemie, Leipzig, 1931.Google Scholar
  47. 47.
    Filonov, A.S. and Yaminskii, I.V., Rukovodstvo pol’zovatelya paketa programmnogo obespecheniya dlya upravleniya skaniruyushchim zondovym mikroskopom i obrabotki izobrazhenii “FemtoSkan-001”. Versiya 2.16 (A Guide for the User of the Software for Controlling Scanning Probe Microscope and Image Processing “ FemtoScan-001”. Version 2.16), Moscow: Tsentr Perspektivnykh Tekhnologii, 1999.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • O. V. Dement’eva
    • 1
  • M. E. Kartseva
    • 1
  • A. V. Bol’shakova
    • 2
  • O. F. Vereshchagina
    • 1
  • V. A. Ogarev
    • 1
  • M. A. Kalinina
    • 1
  • V. M. Rudoy
    • 1
  1. 1.Institute of Physical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Department of PhysicsMoscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations