Colloid Journal

, Volume 66, Issue 6, pp 729–735 | Cite as

Mechanochemical activation of aluminum: 1. joint grinding of aluminum and graphite

  • A. N. Streletskii
  • I. V. Kolbanev
  • A. B. Borunova
  • A. V. Leonov
  • P. Yu. Butyagin


Changes in the crystal structure and composition of aluminum and graphite powder mixtures in the course of their joint mechanical treatment in a vibration mill were monitored by the adsorption and X-ray diffraction techniques. It was shown that, at absorbed energy doses of 8–10 kJ/g, the grinding and mixing of aluminum with graphite is completed by the formation of an intermediate structure of Al/C composite, where aluminum showed an anomalously high reactivity. The interaction of aluminum with water was used to study its reactivity in the composite. The formation of the composite preceded the stage of chemical interaction between carbon and aluminum atoms.


Polymer Aluminum Thin Film Graphite Crystal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yavorovskii, N.A. 1996Izv. Vyssh. Uchebn. Zaved., Fiz.4114Google Scholar
  2. 2.
    Gen, M.Ya. and Miller, A.V., USSR Inventor’s Certificate No. 814 432, Byull. Izobret., 1981, no. 11.Google Scholar
  3. 3.
    Lokenbakh, A.K., Lepin’, L.K., Murnietse, A.Kh.,  et al. 1986Izv. Akad. Nauk Latv. SSR, Ser. Khim.2152Google Scholar
  4. 4.
    Lyashko, A.P., Medvinskii, A.A., Savel’ev, G.G.,  et al. 1990Kinet. Katal.31967Google Scholar
  5. 5.
    Kolbanev, I.V., Streletskii, A.N., Butyagin, P.Yu. 2000Khim. Fiz.1996Google Scholar
  6. 6.
    Naboichenko, S.S. eds. 1997Poroshki tsvetnykh metallov. SpravochnikMetallurgiyaMoscow(Nonferrous Metal Powders: A Handbook)Google Scholar
  7. 7.
    Streletskii, A.N., Kolbanev, I.V., Boruniva, A.B., and Butyagin, P.Yu., J. Mater. Sci., 2004 (in press).Google Scholar
  8. 8.
    Matteaazzi, P., Basset, D., Miani, F.,  et al. 1993Nanostruct. Mater.2217Google Scholar
  9. 9.
    Wu, N.Q., Wu, J.M., Wang, G.X., Li, Z.Z. 1997J. Alloys Compd.260121Google Scholar
  10. 10.
    Suryanarayana, C. 2001Prog. Mater. Sci.461Google Scholar
  11. 11.
    Butyagin, P.Yu., Kuznetsov, A.R., Pavlychev, I.K. 1986Prib. Tekh. Eksp.2201Google Scholar
  12. 12.
    Streletskii, A.N., Abstracts of Papers, 2 Int. Conf. on Mechanical Alloying, 1993, Vancouver, Canada, de Barbadillo, J.J., Froes, F.H., and Swartz, R., Eds., 1993, p. 51.Google Scholar
  13. 13.
    Aronov, M.I. 1959Prib. Tekh. Eksp.1153Google Scholar
  14. 14.
    Shelekhov, E.V., Sviridova, T.A. 2000Met. Sci. Heat Treat.42309Google Scholar
  15. 15.
    Butyagin, P.Yu. 1994Usp. Khim.631031Google Scholar
  16. 16.
    Streletskii, A.N., Pivkina, A.N., Kolbanev, I.V.,  et al. 2004Kolloidn. Zh.66736Google Scholar
  17. 17.
    Pivkina, A., Streletskii, A., Kolbanev, I., et al., J. Mater. Sci., 2004 (in press).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. N. Streletskii
    • 1
  • I. V. Kolbanev
    • 1
  • A. B. Borunova
    • 1
  • A. V. Leonov
    • 2
  • P. Yu. Butyagin
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations