Skip to main content
Log in

Theoretical conformational studies of podands containing (2S,4R)-4-hydroxyproline moieties

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Podands derived from (2S,4R)-4-hydroxyproline and containing two oxygen atoms in the oxyethylene moiety were selected for computational studies of their conformational behavior in solutions and further theoretical studies of their role as chiral inductors of Biginelli reaction. Qualitative differences were identified between the conformations of the basic podand and its bis(trifluoroacetate) derivative. Molecular dynamics simulations and quantum-chemical calculations showed that the bicationic form of podand, in contrast to the corresponding basic one, featured an intramolecular hydrogen bond between the 4-hydroxyproline moieties of terminal groups, which led to a noticeable increase in the averaged rotational energy barriers and a greater energy difference between the predominant conformer structures. The subsequent theoretical evaluation of chemical shifts for the various conformers and comparison of the observed values with experimentally obtained 1Н NMR data allowed to confirm the differences between the conformational behavior of (2S,4R)-4-hydroxyproline podand and its bicationic salt in stereoselective Biginelli reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. Weber, E.; Toner, J. L.; Goldberg, I.; Vögtle, F.; Laidler, D. A.; Stoddart, J. F.; Bartsch, R. A.; Liotta, C. L. Crown Ethers and Analogs; John Wiley & Sons: Chichester, 1989.

  2. (a) Ovchinnikova, I. G.; Fedorova, O. V.; Slepukhin, P. A.; Litvinov, I. A.; Rusinov, G. L. Crystallogr. Rep. 2009, 54, 31. [Kristallografiya 2009, 54, 37.] (b) Koryakova, O. V.; Isenov, M. L.; Filatova, E. S.; Fedorova, O. V. J. Struct. Chem. 2017, 58, 38. [Zh. Struktur. Khim. 2017, 58, 43.] (c) Radionova, Е. S.; Titova, Yu. А.; Isenov, М. L.; Fedorova, О. V.; Rusinov, G. L.; Charushin, V. N. Chem. Heterocycl. Compd. 2014, 50, 998. [Khim. Geterotsikl. Soedin. 2014, 1083.] (d) Ovchinnikova, I. G.; Fedorova, O. V.; Matochkina, E. G.; Kodess, M. I.; Tumashov, A. A.; Slepukhin, P. A.; Rusinov, G. L.; Charushin, V. N. Macroheterocycles 2010, 3, 108. (e) Fedorova, O. V.; Ovchinnikova, I. G.; Kravchenko, M. A.; Skornyakov, S. N.; Rusinov, G. L.; Chupakhin, O. N.; Charushin, V. N. Chem. Heterocycl. Compd. 2014, 50, 946. [Khim. Geterotsikl. Soedin. 2014, 1027.]

  3. (a) Fedorova, O. V.; Titova, Y. A.; Ovchinnikova, I. G.; Rusinov, G. L.; Charushin, V. N. Mendeleev Commun. 2018, 28, 357. (b) Titova, Y. A.; Ovchinnikova, I. G.; Fedorova, O. V.; Rusinov, G. L.; Charushin, V. N. Proceedings 2018, 2, 12.

  4. Xin, J.; Chang, L.; Hou, Z.; Shang, D.; Liu, X.; Feng, X. Chem.–Eur. J. 2008, 14, 3177.

    Article  CAS  PubMed  Google Scholar 

  5. (a) Casanovas, J.; Namba, A. M.; León, S.; Aquino, G. L. B.; da Silva, G. V. J.; Alemán, C. J. Org. Chem. 2001, 66, 3775. (b) Sebag, A. B.; Forsyth, D. A.; Plante, M. A. J. Org. Chem. 2001, 66, 7967.

  6. Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. Comput. Phys. Commun. 2014, 185, 604.

    Article  CAS  Google Scholar 

  7. Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497.

    Article  CAS  Google Scholar 

  8. Bifulco, G.; Dambruoso, P.; Gomez-Paloma, L.; Riccio, R. Chem. Rev. 2007, 107, 3744.

    Article  CAS  PubMed  Google Scholar 

  9. (a) Wang, B.; Dossey, A. T.; Walse, S. S.; Edison, A. S.; Merz, K. M. J. Nat. Prod. 2009, 72, 709. (b) Forsyth, D. A.; Sebag, A. B. J. Am. Chem. Soc. 1997, 119, 9483.

  10. Balandina, A.; Mamedov, V.; Franck, X.; Figadère, B.; Latypov, Sh. Tetrahedron Lett. 2004, 45, 4003.

    Article  CAS  Google Scholar 

  11. Colombo, D.; Ferraboschi, P.; Ronchetti, F.; Toma, L. Magn. Reson. Chem. 2002, 40, 581.

    Article  CAS  Google Scholar 

  12. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.

    Article  CAS  PubMed  Google Scholar 

  13. Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2013, 3, 198.

    CAS  Google Scholar 

  14. Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269.

    Article  CAS  Google Scholar 

  15. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. SoftwareX 2015, 1, 19.

    Article  Google Scholar 

  16. Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126, 014101.

    Article  CAS  PubMed  Google Scholar 

  17. Domene, C.; Barbini, P.; Furini, S. J. Chem. Theory Comput. 2015, 11, 1896.

    Article  CAS  PubMed  Google Scholar 

  18. Barducci, A.; Bussi, G.; Parrinello, M. Phys. Rev. Lett. 2008, 100, 020603.

    Article  CAS  PubMed  Google Scholar 

  19. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision A.03; Gaussian, Inc.: Wallingford, 2016.

  20. Mennucci, B.; Tomasi, J.; Cammi, R.; Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Gabriel, S.; Stephens, P. J. J. Phys. Chem. A 2002, 106, 6102.

    Article  CAS  Google Scholar 

Download references

This work was performed with financial support provided by State assignment No. 075005781900 of the Ministry of Education and Science of the Russian Federation, with partial support from the Russian Foundation for Basic Research (project 16-29-10757-ofi_m), as well as with support from the Ministry of Science and Higher Education of the Russian Federation (project 4.1157.2017/4.6, action 211, contract 02.A03.21.0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina V. Bartashevich.

Additional information

Dedicated to Academician O. N. Chupakhin on his birthday.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2019, 55(8), 755–761

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodina, O.S., Makarov, G.I., Bartashevich, E.V. et al. Theoretical conformational studies of podands containing (2S,4R)-4-hydroxyproline moieties. Chem Heterocycl Comp 55, 755–761 (2019). https://doi.org/10.1007/s10593-019-02531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-019-02531-4

Keywords

Navigation