Skip to main content
Log in

The influence of Lewis acid catalyst on the kinetic and molecular mechanism of nitrous acid elimination from 5-nitro-3-phenyl-4,5-dihydroisoxazole: DFT computational study

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The molecular mechanism of nitrous acid elimination from 5-nitro-3-phenyl-4,5-dihydroisoxazole systems has been explored using DFT computational study. It was found that under both catalytic and non-catalytic conditions, these processes proceed according to a one-step asynchronous mechanism. The asynchronicity of transition state is determined by presence of Lewis acid catalyst. However, it is not enough to force an ionic mechanism. The proposed pattern can be considered as a general mechanism for this group of heterocyclic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  1. Varvounis, G.; Gerontitis, I. E.; Gkalpinos, V. Chem. Heterocycl. Compd. 2018, 54, 249. [Khim. Geterotsikl. Soedin. 2018, 54, 249.]

  2. Markitanov, Yu. N.; Timoshenko, V. M.; Shermolovich, Yu. G. Chem. Heterocycl. Compd. 2018, 54, 89. [Khim. Geterotsikl. Soedin. 2018, 54, 89.]

  3. Sysak, A.; Obmińska-Mrukowicz, B. I. Eur. J. Med. Chem. 2017, 137, 292.

  4. Zhang, H.-Z.; Zhao, Z.-L.; Zhou, C.-H. Eur. J. Med. Chem. 2018, 144, 444.

  5. Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Richmond, 1990.

  6. Advances in Quantum Chemistry; Sabin, J., Brandas, E., Eds.; Academic Press, 1985.

  7. Muhlstadt, V. M.; Schulze, B. J. Prakt. Chem. 1971, 313, 745.

  8. Koroleva, E. V.; Bondar, N. F.; Katok, Ya. M.; Chekanov, N. A.; Chernikhova, T. V. Chem. Heterocycl. Compd. 2007, 43, 362. [Khim. Geterotsikl. Soedin. 2007, 447.]

  9. Jasiński, R.; Jasińska, E.; Dresler, E. J. Mol. Model. 2017, 23, 13.

  10. Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.

  11. Kącka, A.; Jasiński, R. Comput. Theor. Chem. 2017, 1104, 37.

  12. Kącka, A.; Domingo, L. R.; Jasiński, R. Res. Chem. Intermed. 2018, 44, 325.

  13. Domingo, L. R. RSC Adv. 2014, 4, 32415.

  14. Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; WILEY-VCH Verlag GmbH, 2008.

  15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 16, Revision A.03; Gaussian Inc.: Wallingford, 2016.

  16. Ndassa, I. M.; Adjieufack, A. I.; Ketcha, J. M.; Berski, S.; Ríos-Gutierrez, M.; Domingo, L. R. Int. J. Quantum Chem. 2017, 117, e25451.

  17. Jasiński, R. Comput. Theor. Chem. 2014, 1046, 93.

  18. Jasiński, R. J. Fluorine Chem. 2014, 160, 29.

  19. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.

Download references

All calculations reported in this manuscript were performed on Prometheus cluster in the CYFRONET regional computational center in Cracow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radomir Jasiński.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2018, 54(12), 1172–1174

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Łapczuk-Krygier, A., Jaśkowska, J. & Jasiński, R. The influence of Lewis acid catalyst on the kinetic and molecular mechanism of nitrous acid elimination from 5-nitro-3-phenyl-4,5-dihydroisoxazole: DFT computational study. Chem Heterocycl Comp 54, 1172–1174 (2018). https://doi.org/10.1007/s10593-019-02410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-019-02410-y

Keywords

Navigation