Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 3, pp 362–368 | Cite as

Synthesis of novel 3-[(1-glycosyl-1H-1,2,3-triazol-4-yl)- methylamino]ket-2-en-1-ones

  • Banty Kumar
  • Jyotirmoy Maity
  • Amit Kumar
  • Vinod Khatri
  • Bhawani Shankar
  • Ashok K. PrasadEmail author
Article
  • 157 Downloads

Nine 3-[(1-β-D-ribofuranosyl- and 3-[(1-β-D-glucopyranosyl-1H-1,2,3-triazol-4-yl)methylamino]ket-2-en-1-ones have been synthesized by copper-catalyzed azide–alkyne cycloaddition (CuAAC) reaction between propargylamine derivatives and 1-azido-2,3,5-tri-O-benzoylβ-D-ribofuranose or 2,3,4,6-tetra-O-acetyl-1-azido-β-D-glucopyranose, followed by deprotection of the resulting tri-O-benzoyl- or tetraO-acetyl-1-β-D-glycosyltriazoles in good yields. The precursor propargylamine derivatives were synthesized by Sonogashira reaction of substituted acetylenes and benzoyl chloride followed by Michael-type addition of propargylamine to the resulting substituted alkynes in good yields. The precursor azido sugars, 1-azido-2,3,5-tri-O-benzoyl-β-D-ribofuranose and 2,3,4,6-tetra-O-acetyl-1-azido-β-D-glucopyranose, were synthesized by azidation of 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose and β-D-glucopyranose pentacetate, respectively, with azidotrimethylsilane in the presence of tin(IV) chloride. All products were unambiguously characterized on the basis of the spectral data analysis.

Keywords

N-glycoconjugates CuAAC reaction Sonogashira reaction 

Notes

We are grateful to University of Delhi for providing financial support under DU-DST Purse grant to strengthen research and development. We are also thankful to CIF-USIC, University of Delhi for providing the NMR spectral and HRMS recording facilities.

Electronic supplementary material

10593_2018_2274_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1285 kb)

References

  1. 1.
    (a) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357. (b) Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I. A.; Dwek, R. A. Science 2001, 291, 2370. (c) Giannis, A. Angew. Chem., Int. Ed. 1994, 33, 178.Google Scholar
  2. 2.
    Furukawa, J.-I.; Fujitani, N.; Shinohara, Y. Biomolecules 2013, 3, 198.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schultz, M. J.; Swindall, A. F.; Bellis, S. L. Cancer Metastasis Rev. 2012, 31, 501.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Soni, K.; Sah, A. K. RSC Adv. 2014, 4, 6068.CrossRefGoogle Scholar
  5. 5.
    (a) Kuijpers, B. H. M.; Groothuys, S.; Soede, A. C.; Laverman, P.; Boerman, O. C.; van Delft, F. L. V.; Rutjes, F. P. J. T. Bioconjugate Chem. 2007, 18, 1847. a Wilkinson, B. L.; Long, H.; Sim, E.; Fairbanks, A. J. Bioorg. Med. Chem. Lett. 2008, 18, 6265. b Sakashita, M.; Mochizuki, S.; Sakurai, K. Bioorg. Med. Chem. 2014, 22, 5212. c Yu, G.; Ma, Y.; Han, C.; Yao, Y.; Tang, G.; Mao, Z.; Gao, C.; Huang, F. J. Am. Chem. Soc. 2013, 135, 10310.Google Scholar
  6. 6.
    (a) Capicciotti, C. J.; Trant, J. F.; Leclere, M.; Ben, R. N. Bioconjugate Chem. 2011, 22, 605. (b) He, X.-P.; Xu, X.; Zhang, H.-L.; Chen, G.-R.; Xu, S.; Liu, H. Carbohydr. Res. 2011, 346, 1320.Google Scholar
  7. 7.
    (a) Giguere, D.; Patnam, R.; Bellefleur, M.-A.; St-Pierre, C.; Sato, S.; Roy, R. Chem. Commun. 2006, 22, 2379. (b) Tejler, J.; Skogman, F.; Leffler, H.; Nilsson, U. J. Carbohydr. Res. 2007 , 342, 1869. Google Scholar
  8. 8.
    Goyard, D.; Docsa, T.; Gergely, P.; Praly, J. P.; Vidal, S. Carbohydr. Res. 2015, 402, 245.CrossRefPubMedGoogle Scholar
  9. 9.
    (a) Salmon, A. J.; Williams, M. L.; Maresca, A.; Supuran, C. T.; Poulsen, S.-A. Bioorg. Med. Chem. Lett. 2011, 21, 6058. (b) Wilkinson, B. L.; Innocenti, A.; Vullo, D.; Supuran, C. T.; Poulsen, S.-A. J. Med. Chem. 2008, 51, 1945.Google Scholar
  10. 10.
    (a) Rossi, L. L.; Basu, A. Bioorg. Med. Chem. Lett. 2005, 15, 3596. (b) Dedola, S.; Hughes, D. L.; Nepogodiev, S. A.; Rejzek, M.; Field, R. A. Carbohydr. Res. 2010, 345, 1123.Google Scholar
  11. 11.
    Zhang, J.; Garrossian, M.; Gardner, D.; Garrossian, A.; Chang, Y.-T.; Kim, Y. K.; Chang, C.-W. T. Bioorg. Med. Chem. Lett. 2008, 18, 1359.CrossRefPubMedGoogle Scholar
  12. 12.
    Stimac, A.; Kobe, J. Carbohydr. Res 1992, 232, 359.CrossRefGoogle Scholar
  13. 13.
    Salunke, S. B.; Babu, N. S.; Chen, C.-T. Chem. Commun. 2011, 47, 10440.CrossRefGoogle Scholar
  14. 14.
    Yin, W.; He, H.; Zhang, Y.; Luo, D.; He, H. Synthesis 2014, 2617.Google Scholar
  15. 15.
    Wang, Q.; He, L.; Li, K. K.; Tsui, G. C. Org Lett. 2017, 19, 658.CrossRefPubMedGoogle Scholar
  16. 16.
    Fukumaru, T.; Awata, H.; Hamma, H.; Komatsu, T. Agric. Biol. Chem. 1975, 39, 519.Google Scholar
  17. 17.
    Miao, J.; Huang, B.; Liu, H.; Cai, M. RSC Adv. 2017, 7, 42570.CrossRefGoogle Scholar
  18. 18.
    Karabiyikoglu, S.; Kelgokmen, Y.; Zora, M. Tetrahedron 2015, 71, 4324.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Banty Kumar
    • 1
    • 2
  • Jyotirmoy Maity
    • 1
  • Amit Kumar
    • 1
  • Vinod Khatri
    • 1
  • Bhawani Shankar
    • 1
  • Ashok K. Prasad
    • 1
    Email author
  1. 1.Bioorganic Laboratory, Department of ChemistryUniversity of DelhiDelhiIndia
  2. 2.Rajdhani College, Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations