Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 3, pp 269–279 | Cite as

Transition metal-promoted reactions of diarylphosphine oxides as a synthetic method for organophosphorus heterocyclic compounds

  • Yulia H. BudnikovaEmail author
Article

The present work considers main achievements and modern trends in methods of synthesis of organophosphorus heterocyclic compounds through mainly radical phosphorylation of the C(sp2)–H bonds of unsaturated compounds catalyzed by metal salts and complexes. It also summarizes new ways of obtaining both phosphorous cycles (P-cycles) and heterocycles with another heteroatom (N, O, etc.) containing an external organophosphorus substituent. The most important and promising areas of recent years including the synthesis of 1-benzophospholes, arylphosphonates, phosphines, and phosphine oxides are highlighted. The reactions of phosphorylation/cyclization with acetylene, 2-isocyanobiphenyl, alkynoates, and olefins are analyzed. The assumed mechanisms and intermediates in the reactions of formation of the C–P bond are considered. New 1-benzophosphole oxides possessing photochromic, fluorescent, and some other optical properties are described. The work draws attention to the potential of this intensively developed direction of the organoelemental chemistry in last 5 years.

Keywords

alkene alkyne metal radical cyclization phosphorylation 

Notes

The work was supported by the Russian Science Foundation (grant № 14-23-00016).

References

  1. 1.
    Phosphorus Chemistry II, Synthetic Methods; Montchamp, J.-L., Ed.; Springer: Cham, 2015.Google Scholar
  2. 2.
    Organophosphorus Chemistry; Allen, D. W.; Loakes, D.; Tebby, J. C., Eds.; RCS Publishing: London, 2012, Vol. 41.Google Scholar
  3. 3.
    Alexandre, F.-R.; Amador, A.; Bot, S.; Caillet, C.; Convard, T.; Jakubik, J.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Roland, A.; Seifer, M.; Standring, D.; Storer, R.; Dousson, C. B. J. Med. Chem. 2011, 54, 392.CrossRefPubMedGoogle Scholar
  4. 4.
    Queffélec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B. Chem. Rev. 2012, 112, 3777.CrossRefPubMedGoogle Scholar
  5. 5.
    Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and Technology; CRC Press: Boca Raton, 2013, 6th ed.CrossRefGoogle Scholar
  6. 6.
    McClure, C. K. Phosphorus in Organic Chemistry; Wiley-VCH: Weinhein, 2012.Google Scholar
  7. 7.
    Xu, Q.; Zhou, Y.-B.; Zhao, C.-Q.; Yin, S.-F.; Han, L.-B. Mini-Rev. Med. Chem. 2013, 13, 824.CrossRefPubMedGoogle Scholar
  8. 8.
    Budnikova, Yu. H.; Sinyashin, O. G. Russ. Chem. Rev. 2015, 84, 917. [Usp. Khim. 2015, 84, 917.]Google Scholar
  9. 9.
    Pan, X.-Q.; Wang, L.; Zou, J.-P.; Zhang, W. Chem. Commun. 2011, 7875.Google Scholar
  10. 10.
    Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C. J. Am. Chem. Soc. 2013, 135, 14082.CrossRefPubMedGoogle Scholar
  11. 11.
    Chu, X.-Q.; Zi, Y.; Meng, H.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2014, 7642.Google Scholar
  12. 12.
    Gao, Y.; Tang, G.; Zhao, Y. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192(6), 589.CrossRefGoogle Scholar
  13. 13.
    Li, Y.-M.; Sun, M.; Wang, H.-L.; Tian, Q.-P.; Yang, S.-D. Angew. Chem., Int. Ed. 2013, 52, 3972.CrossRefGoogle Scholar
  14. 14.
    Li, Y.-M.; Shen, Y.; Chang, K.-J.; Yang, S.-D. Tetrahedron 2014, 70, 1991.CrossRefGoogle Scholar
  15. 15.
    Zhang, B.; Daniliuc, C. G.; Studer, A. Org. Lett. 2014, 16, 250.CrossRefPubMedGoogle Scholar
  16. 16.
    Stolar, M.; Baumgartner, T. Chem.–Asian J. 2014, 9, 1212.CrossRefPubMedGoogle Scholar
  17. 17.
    Gilard, V.; Martino, R.; Malet-Martino, M.; Niemeyer U.; Pohl, J. J. Med. Chem. 1999, 42, 2542.CrossRefPubMedGoogle Scholar
  18. 18.
    Mader, M. M.; Bartlett, P. A. Chem. Rev. 1997, 97, 1281.CrossRefPubMedGoogle Scholar
  19. 19.
    Darrow, J. W.; Drueckhammer, D. G. J. Org. Chem. 1994, 59, 2976.CrossRefGoogle Scholar
  20. 20.
    Kumar, A.; Sharma, P.; Gurram, V. K.; Rane, N. Bioorg. Med. Chem. Lett. 2006, 16, 2484.CrossRefPubMedGoogle Scholar
  21. 21.
    Matano, Y.; Saito, A.; Fukushima, T.; Tokudome, Y.; Suzuki, F.; Sakamaki, D.; Kaji, H.; Ito, A.; Tanaka, K.; Imahori, H. Angew. Chem., Int. Ed. 2011, 50, 8016.CrossRefGoogle Scholar
  22. 22.
    Fukazawa, A.; Yamaguchi, E.; Ito, E.; Yamada, H.; Wang, J.; Irle, S.; Yamaguchi, S. Organometallics 2011, 30, 3870.CrossRefGoogle Scholar
  23. 23.
    Ren, Y.; Baumgartner, T. J. Am. Chem. Soc. 2011, 133, 1328.CrossRefPubMedGoogle Scholar
  24. 24.
    Tsuji, H.; Sato, K.; Sato, Y.; Nakamura, E. Chem.–Asian J. 2010, 5, 1294.PubMedGoogle Scholar
  25. 25.
    Tsuji, H.; Sato, K.; Sato, Y.; Nakamura, E. J. Mater. Chem. 2009, 19, 3364.CrossRefGoogle Scholar
  26. 26.
    Fukazawa, A.; Ichihashi, Y.; Kosaka, Y.; Yamaguchi, S. Chem.–Asian J. 2009, 4, 1729.CrossRefPubMedGoogle Scholar
  27. 27.
    Matano, Y.; Imahori, H. Org. Biomol. Chem. 2009, 7, 1258.CrossRefPubMedGoogle Scholar
  28. 28.
    Crassous, J.; Réau, R. Dalton Trans. 2008, 6865.Google Scholar
  29. 29.
    Ren Y.; Baumgartner, T. Dalton Trans. 2012, 41, 7792.CrossRefPubMedGoogle Scholar
  30. 30.
    Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 12975.CrossRefGoogle Scholar
  31. 31.
    Chen, Y.-R.; Duan, W.-L. J. Am. Chem. Soc. 2013, 135, 16754.CrossRefPubMedGoogle Scholar
  32. 32.
    Ma, W.; Ackermann, L. Synthesis 2014, 2297.Google Scholar
  33. 33.
    Zhang, P.; Gao, Y.; Zhang, L.; Li, Z.; Liu, Y.; Tang, G.; Zhao, Y. Adv. Synth. Catal. 2016, 358, 138.CrossRefGoogle Scholar
  34. 34.
    Ma, D.; Chen, W.; Hu, G.; Zhang, Y.; Gao, Y.; Yin, Y.; Zhao, Y. Green Chem. 2016, 18, 3522.CrossRefGoogle Scholar
  35. 35.
    Quint, V.; Morlet-Savary, F.; Lohier, J.-F.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S. J. Am. Chem. Soc. 2016, 138, 7436.CrossRefPubMedGoogle Scholar
  36. 36.
    Khrizanforova, V. V.; Khrizanforov, M. N.; Gryaznova, T. V.; Budnikova, Y. H. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 1602.CrossRefGoogle Scholar
  37. 37.
    Budnikova, Y. H.; Gryaznova, T. V.; Grinenko, V. V.; Dudkina, Y. B.; Khrizanforov, M. N. Pure Appl. Chem. 2017, 89, 311.Google Scholar
  38. 38.
    Hu, G.; Zhang, Y.; Su, J.; Li, Z.; Gao, Y.; Zhao, Y. Org. Biomol. Chem. 2015, 13, 8221.CrossRefPubMedGoogle Scholar
  39. 39.
    Wu, N. M.-W.; Wong, H.-L.; Yam, V. W.-W. Chem. Sci. 2017, 8, 1309.CrossRefPubMedGoogle Scholar
  40. 40.
    Hay, C.; Fischmeister, C.; Hissler, M.; Toupet, L.; Réau, R. Angew. Chem., Int. Ed. 2000, 39, 1812.CrossRefGoogle Scholar
  41. 41.
    Bouit, P.-A.; Escande, A.; Szűcs, R.; Szieberth, D.; Lescop, C.; Nyulászi, L.; Hissler, M.; Réau, R. J. Am. Chem. Soc. 2012, 134, 6524.CrossRefPubMedGoogle Scholar
  42. 42.
    Unoh, Y.; Yokoyama, Y.; Satoh, T.; Hirano, K.; Miura, M. Org. Lett. 2016, 18, 5436.CrossRefGoogle Scholar
  43. 43.
    Koyanagi, Y.; Kawaguchi, S.; Fujii, K.; Kimura, Y.; Sasamori, T.; Tokitoh, N.; Matano, Y. Dalton Trans. 2017, 9517Google Scholar
  44. 44.
    Elaieb, F.; Hedhli, A.; Sémeril, D.; Matt, D.; Harrowfield, J. Eur. J. Org. Chem. 2016, 3103.Google Scholar
  45. 45.
    Elaieb, F.; Sémeril, D.; Matt, D.; Pfeffer, M.; Bouit, P.-A.; Hissler, M.; Gourlaouen, C.; Harrowfield, J. Dalton Trans. 2017, 46, 9833.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang, B.; Daniliuc, C. G.; Studer, A. Org. Lett. 2014, 16, 250.CrossRefPubMedGoogle Scholar
  47. 47.
    Yang, B.; Tian, Q.; Yang, S. Chin. J. Org. Chem. 2014, 34, 717.CrossRefGoogle Scholar
  48. 48.
    Cao, J.-J.; Zhu, T.-H.; Gu, Z.-Y.; Hao, W.-J.; Wang, S.-Y.; Ji, S.-J. Tetrahedron 2014, 70, 6985.CrossRefGoogle Scholar
  49. 49.
    Li, Y.; Qiu, G.; Ding, Q.; Wu, J. Tetrahedron 2014, 70, 4652.CrossRefGoogle Scholar
  50. 50.
    Gao, Y.; Wu, J.; Xu, J.; Wang, X.; Tang, G.; Zhao, Y. Asian J. Org. Chem. 2014, 3, 691.CrossRefGoogle Scholar
  51. 51.
    Li, C.-X.; Tu, D.-S.; Yao, R.; Yan, H.; Lu, C.-S. Org. Lett. 2016, 18, 4928.CrossRefPubMedGoogle Scholar
  52. 52.
    Abdel-Halim, O. B.; Morikawa, T.; Ando, S.; Matsuda, H.; Yoshikawa, M. J. Nat. Prod. 2004, 67, 1119.CrossRefPubMedGoogle Scholar
  53. 53.
    Sripada, L.; Teske, J. A.; Deiters, A. Org. Biomol. Chem. 2008, 6, 263.CrossRefPubMedGoogle Scholar
  54. 54.
    Guo, W.-S.; Dou, Q.; Hou, J.; Wen, L.-R.; Li, M. J. Org. Chem. 2017, 82, 7015.CrossRefPubMedGoogle Scholar
  55. 55.
    Wu, J.; Gao, Y.; Zhao, X.; Zhang, L.; Chen, W.; Tang, G.; Zhao, Y. RSC Adv. 2016, 6, 303.CrossRefGoogle Scholar
  56. 56.
    Li, Y.-M.; Sun, M.; Wang, H.-L.; Tian, Q.-P.; Yang, S.-D. Angew. Chem., Int. Ed. 2013, 52, 3972.CrossRefGoogle Scholar
  57. 57.
    Li, Y.-M.; Shen, Y.; Chang, K.-J.; Yang, S.-D. Tetrahedron 2014, 70, 1991.CrossRefGoogle Scholar
  58. 58.
    Zhang, H.; Gu, Z.; Li, Z.; Pan, C.; Li, W.; Hu, H.; Zhu, C. J. Org. Chem. 2016, 81, 2122.CrossRefPubMedGoogle Scholar
  59. 59.
    Li, Y.-M.; Wang, S.-S.; Yu, F.; Shen, Y.; Chang, K.-J. Org. Biomol. Chem. 2015, 13, 5376.CrossRefPubMedGoogle Scholar
  60. 60.
    Zheng, J.; Zhang, Y.; Wang, D.; Cui, S. Org. Lett. 2016, 18, 1768.CrossRefPubMedGoogle Scholar
  61. 61.
    Zhou, Z.-Z.; Zheng, L.; Yan, X.-B.; Jin, D.-P.; He, Y.-T.; Liang, Y.-M. Org. Biomol. Chem. 2016, 14, 4507.CrossRefPubMedGoogle Scholar
  62. 62.
    Kong, W.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2014, 53, 5078.Google Scholar
  63. 63.
    Gao, Y.; Li, X.; Xu, J.; Wu, Y.; Chen, W.; Tang, G.; Zhao, Y. Chem. Commun. 2015, 1605.Google Scholar
  64. 64.
    Gao, Y.; Li, X.; Chen, W.; Tang, G.; Zhao, Y. J. Org. Chem. 2015, 80, 11398.CrossRefPubMedGoogle Scholar
  65. 65.
    Zhao, J.; Li, P.; Li, X.; Xia, C.; Li, F. Chem. Commun. 2016, 3661.Google Scholar
  66. 66.
    Mao, L.; Li, Y.; Yang, S. Chin. J. Chem. 2017, 35, 316.CrossRefGoogle Scholar
  67. 67.
    Mi, X.; Wang, C.; Huang, M.; Zhang, J.; Wu, Y.; Wu, Y. Org. Lett. 2014, 16, 3356.CrossRefPubMedGoogle Scholar
  68. 68.
    Zhang, P.; Zhang, L.; Gao, Y.; Tang, G.; Zhao, Y. RSC Adv. 2016, 6, 60922.CrossRefGoogle Scholar
  69. 69.
    Li, D.-P.; Pan, X.-Q.; An, L.-T.; Zou, J.-P.; Zhang, W. J. Org. Chem. 2014, 79, 1850.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhou, J.; Zhang, G.-L.; Zou, J.-P.; Zhang, W. Eur. J. Org. Chem. 2011, 3412.Google Scholar
  71. 71.
    Wang, L.-J.; Wang, A.-Q.; Xia, Y.; Wu, X.-X.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2014, 50, 13998.CrossRefGoogle Scholar
  72. 72.
    Zhang, H.; Li, W.; Zhu, C. J. Org. Chem. 2017, 82, 2199.CrossRefPubMedGoogle Scholar
  73. 73.
    Novikov, M.; Rostovskii, N.; Khlebnikov, A.; Yufit, D. S. Chem. Heterocycl. Compd. 2017, 53, 985. [Khim. Geterotsikl. Soedin. 2017, 53, 985.]Google Scholar
  74. 74.
    Gulevich, A. V.; Gevorgyan, V. Chem. Heterocycl. Compd. 2012, 48, 17. [Khim. Geterotsikl. Soedin. 2012, 22.]Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.A. E. Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of the Russian Academy of SciencesKazanRussia

Personalised recommendations