Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 3, pp 241–248 | Cite as

Gold and silver nanoparticle-catalyzed synthesis of heterocyclic compounds

  • Rupinder Kaur
  • Jitender Bariwal
  • Leonid G. Voskressensky
  • Erik V. Van der EyckenEmail author
Article

In recent years, metallic nanoparticles have been a constant subject of attention for researchers. The transition of metal from microparticles to nanoparticles leads to a substantial change in its physical and chemical properties. Nanoparticles as catalyst in organic reactions provide additional benefits such as catalyst recycling, scale-up of reactions using continuous flow processes, and easy purification of the reaction mixture offering green and cost-effective alternatives. This review highlights some of the significant gold and silver nanoparticle-catalyzed reactions for the synthesis of various heterocyclic compounds. A brief synthetic methodology for different heterocyclic compounds is discussed along with the scope of the reaction.

Keywords

heterocyclic compounds indole spiroindoline triazole nanoparticle 

Notes

The authors are thankful to ISF College of Pharmacy, Moga, Punjab, India, University of Nebraska Medical Center, Omaha, NE, USA, KU Leuven, Belgium and for support of RUDN University, Moscow, Russia (Program 5-100).

References

  1. 1.
    Broughton, H. B.; Watson, I. A. J. Mol. Graphics Modell. 2004, 23, 51.CrossRefGoogle Scholar
  2. 2.
    Thomas, J. M.; Thomas, W. J. Principles and Practice of Heterogeneous Catalysis; John Wiley & Sons: New York, 2014.Google Scholar
  3. 3.
    (a) Li, L.-s.; Hu, J.; Yang, W.; Alivisatos, A. P. Nano Lett. 2001, 1, 349. (b) Jin, R. Nanotechnol. Rev. 2012, 1, 31.Google Scholar
  4. 4.
    (a) Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293. (b) Goluch, E. D.; Nam, J.-M.; Georganopoulou, D. G.;Chiesl, T. N.; Shaikh, K. A.; Ryu, K. S.; Barron, A. E.; Mirkin, C. A.; Liu, C. Lab Chip 2006, 6, 1293. (c) Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105, 1547. (d) Pasquato, L.; Pengo, P.; Scrimin, P. J. Mater. Chem. 2004, 14, 3481. (e) Bond, G. C.; Louis, C.; Thompson, D. Catalysis by Gold; Hutchings, G. J., Ed.; Imperial College Press: London, 2006, p. 1.Google Scholar
  5. 5.
    Isomura, Y.; Narushima, T.; Kawasaki, H.; Yonezawa, T.; Obora, Y. Chem. Comm. 2012, 48, 3784.CrossRefPubMedGoogle Scholar
  6. 6.
    Haruta, M. CATTECH 2002, 6, 102.CrossRefGoogle Scholar
  7. 7.
    (a) Li, J.; Tang, G.; Wang, Y.; Wang, Y.; Li, Z.; Li, H. New J. Chem. 2016, 40, 358. (b) Wang, H.; Yang, K.-F.; Li, L.; Bai, Y.; Zheng, Z.-J.; Zhang, W.-Q.; Gao, Z.-W.; Xu, L.-W.ChemCatChem 2014, 6, 580. (c) Dong, X.-Y.; Gao, L.-X.;Zhang, W.-Q.; Cui, Y.-M.; Yang, K.-F; Gao, Z.-W.; Xu, L.-W. ChemistrySelect 2016, 1, 4034.Google Scholar
  8. 8.
    (a) Mielby, J.; Kegnæs, S.; Fristrup, P. ChemCatChem 2012, 4, 1037. (b) Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Chem. Rev. 2012, 112, 2467. (c) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657. (d) Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Chem. Soc. Rev. 2008, 37, 1783. (e) Hashmi, A. S. K. Acc. Chem. Res. 2014, 47, 864. (f) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (g) Pflästerer, D.; Hashmi, A. S. K. Chem. Soc. Rev. 2016, 45, 1331. (h) Gold Catalysis. An Homogeneous Approach; Toste, F. D.; Michelet, V., Eds.; Imperial College Press: London, 2014. (i) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028. (j) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902. (k) Dorel, R.; Echavarren, A. M. J. Org. Chem. 2015, 80, 7321. (l) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem.–Asian J. 2014, 9, 3066.Google Scholar
  9. 9.
    (a) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208. (b) Cossy, J. Pure Appl. Chem. 2010, 82, 1365.Google Scholar
  10. 10.
    (a) Dong, X.-Y.; Gao, Z.-W.; Yang, K.-F.; Zhang, W.-Q.; Xu, L.-W. Catal. Sci. Technol. 2015, 5, 2554. (b) Chopra, R.; Sharma, K.; Kumar, M.; Bhalla, V. J. Org. Chem. 2016, 81, 1039.Google Scholar
  11. 11.
    Sharma, V. K.; Yngard, R. A.; Lin, Y. Adv. Colloid Interface Sci. 2009, 145, 83.CrossRefPubMedGoogle Scholar
  12. 12.
    Sharma, N.; Bhatt, G.; Kothiyal, P. Indian J. Pharm. Biol. Res. 2015, 3, 13.Google Scholar
  13. 13.
    Thompson, D. T. Nano Today 2007, 2, 40.CrossRefGoogle Scholar
  14. 14.
    (a) Lal, S.; Snape, T. J. Curr. Med. Chem. 2012, 19, 4828. (b) Sharma, V.; Kumar, P.; Pathak, D. J. Heterocycl. Chem. 2010, 47, 491.Google Scholar
  15. 15.
    Yamane, Y.; Liu, X.; Hamasaki, A.; Ishida, T.; Haruta, M.; Yokoyama, T.; Tokunaga, M. Org. Lett. 2009, 11, 5162.CrossRefPubMedGoogle Scholar
  16. 16.
    Perea-Buceta, J. E.; Wirtanen, T.; Laukkanen, O.-V.; Mäkelä, M. K.; Nieger, M.; Melchionna, M.; Huittinen, N.; Lopez-Sanchez, J. A.; Helaja, J. Angew. Chem., Int. Ed. 2013, 52, 11835.CrossRefGoogle Scholar
  17. 17.
    Savva, I.; Kalogirou, A. S.; Achilleos, M.; Vasile, E.; Koutentis, P. A.; Krasia-Christoforou, T. Molecules 2016, 21, 1218.CrossRefGoogle Scholar
  18. 18.
    Schröder, F.; Erdmann, N.; Noël, T.; Luque, R.; Van der Eycken, E. V. Adv. Synth. Catal. 2015, 357, 3141.CrossRefGoogle Scholar
  19. 19.
    (a) Xing, L.; McDonald, J. J.; Kolodziej, S. A.; Kurumbail, R. G.; Williams, J. M.; Warren, C. J.; O'Neal, J. M.; Skepner, J. E.; Roberds, S. L. J. Med. Chem. 2011, 54, 1211. (b) Siracusa, M. A.; Salerno, L.; Modica, M. N.; Pittalà, V.; Romeo, G.; Amato, M. E.; Nowak, M.; Bojarski, A. J.; Mereghetti, I.; Cagnotto, A.; Mennini, T. J. Med. Chem. 2008, 51, 4529. (c) Shah, K.; Chhabra, S.; Shrivastava, S. K.; Mishra, P. Med. Chem. Res. 2013, 22, 5077. (d) Jain, A. K.; Paul, A.; Maji, B.; Muniyappa, K.; Bhattacharya, S. J. Med. Chem. 2012, 55, 2981.Google Scholar
  20. 20.
    Tang, L.; Guo, X.; Yang, Y.; Zha, Z.; Wang, Z. Chem. Commun. 2014, 50, 6145.CrossRefGoogle Scholar
  21. 21.
    Bonandi, E.; Christodoulou, M. S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. Drug Discovery Today 2017, 22, 1572.CrossRefPubMedGoogle Scholar
  22. 22.
    Boominathan, M.; Pugazhenthiran, N.; Nagaraj, M.; Muthusubramanian, S.; Murugesan, S.; Bhuvanesh, N. ACS Sustainable Chem. Eng. 2013, 1, 1405.CrossRefGoogle Scholar
  23. 23.
    (a) Feng, L.-S.; Liu, M.-L.; Zhang, S.; Chai, Y.; Wang, B.; Zhang, Y.-B.; Lv, K.; Guan, Y.; Guo, H.-Y.; Xiao, C.-L. Eur. J. Med. Chem. 2011, 46, 341. (b) Jain, S.; Chandra, V.; Jain, P. K.; Pathak, K.; Pathak, D.; Vaidya, A. Arabian J. Chem. 2016, https://doi.org/ https://doi.org/10.1016/j.arabjc.2016.10.009. (c) Mandewale, M. C.; Patil, U. C.; Shedge, S. V.; Dappadwad, U. R.; Yamgar, R. S. Beni-Suef Univ. J. Basic Appl. Sci. 2017, 6, 354.
  24. 24.
    So, M.-H.; Liu, Y.; Ho, C.-M.; Lam, K.-Y.; Che, C.-M. ChemCatChem 2011, 3, 386.CrossRefGoogle Scholar
  25. 25.
    (a) Wodka, D.; Bielanska, E.; Socha, R. P.; Elzbieciak-Wodka, M.; Gurgul, J.; Nowak, P.; Warszyński, P.; Kumakiri, I. ACS Appl. Mater. Interfaces 2010, 2, 1945. (b) Dinh, C.-T.; Nguyen, T.-D.; Kleitz, F.; Do, T.-O. ACS Appl. Mater. Interfaces 2011, 3, 2228. (c) Taşcı, Z.; Kunduracıoğlu, A.; Kani, İ.; Çetinkaya, B. ChemCatChem 2012, 4, 831. (d) Nowack, B. Science 2010, 330, 1054.Google Scholar
  26. 26.
    (a) Herr, R. J. Bioorg. Med. Chem. 2002, 10, 3379. (b) Butler, R. N. Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996, Vol. 4, p. 621.Google Scholar
  27. 27.
    Mani, P.; Sharma, C.; Kumar, S.; Awasthi, S. K. J. Mol. Catal. A: Chem. 2014, 392, 150.CrossRefGoogle Scholar
  28. 28.
    (a) Baraldi, P. G.; Tabrizi, M. A.; Preti, D.; Bovero, A.; Romagnoli, R.; Fruttarolo, F.; Zaid, N. A.; Moorman, A. R.; Varani, K.; Gessi, S.; Merghi, S.; Borea, P. A. J. Med. Chem. 2004, 47, 1434. (b) Lee, L. US Patent S4933471A. (c) Pfister, J. R.; Belardinelli, L.; Lee, G.; Lum, R. T.; Milner, P.; Stanley, W. C.; Linden, J.; Baker, S. P.; Schreiner, G. J. Med. Chem. 1997, 40, 1773.Google Scholar
  29. 29.
    Safaei-Ghomi, J.; Ghasemzadeh, M. A. J. Saudi Chem. Soc. 2015, 19, 642.CrossRefGoogle Scholar
  30. 30.
    Schröder, F.; Sharma, U. K.; Mertens, M.; Devred, F.; Debecker, D. P.; Luque, R.; Van der Eycken, E. V. ACS Catalysis 2016, 6, 8156.Google Scholar
  31. 31.
    Maleki, A.; Movahed, H.; Ravaghi, P. Carbohydr. Polym. 2017, 156, 259.CrossRefPubMedGoogle Scholar
  32. 32.
    Balwe, S. G.; Shinde, V. V.; Rokade, A. A.; Park, S. S.; Jeong, Y. T. Catal. Commun. 2017, 99, 121.CrossRefGoogle Scholar
  33. 33.
    Hano, Y.; Yamanaka, J.; Nomura, T.; Momose, Y. Heterocycles 1995, 41, 1035.CrossRefGoogle Scholar
  34. 34.
    Cong, H.; Porco, J. A., Jr. Org. Lett. 2012, 14, 2516.Google Scholar
  35. 35.
    (a) Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2003, 115, 2998. (b) Stoltz, B. M.Chem. Lett. 2004, 33, 362. (c) Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 17778.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rupinder Kaur
    • 1
  • Jitender Bariwal
    • 2
    • 3
  • Leonid G. Voskressensky
    • 4
  • Erik V. Van der Eycken
    • 3
    • 4
    Email author
  1. 1.ISF College of PharmacyMogaIndia
  2. 2.College of PharmacyUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.University of LeuvenLeuvenBelgium
  4. 4.RUDN UniversityMoscowRussia

Personalised recommendations