Advertisement

Chemistry of Heterocyclic Compounds

, Volume 54, Issue 3, pp 214–240 | Cite as

Metal-catalyzed [3+2] cycloadditions of azomethine imines

  • Uroš Grošelj
  • Jurij Svete
  • Hamad H. Al Mamari
  • Franc Požgan
  • Bogdan ŠtefaneEmail author
REVIEWS

In the last decade, metal-catalyzed [3+2] cycloadditions of azomethine imines have emerged as a regioselective and stereoselective method for the synthesis of pyrazolidines and pyrazolines. A considerable number of asymmetric reactions proved the viability of metalcatalyzed [3+2] cycloadditions of azomethine imines for the synthesis of nonracemic cycloadducts. This review covers around 50 examples of title reactions that have been published since 2002.

Keywords

azomethine imines pyrazolines transition metals catalysis cyclization [3+2] cycloadditions 

Notes

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P1-0179).

Bogdan Štefane acknowledges the Sultan Qaboos University, Sultanate of Oman, for generous position of visiting professorship.

We thank Dr. Helena Brodnik Žugelj for technical support in preparation of the manuscript.

References

  1. 1.
    Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565.Google Scholar
  2. 2.
    Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 633.Google Scholar
  3. 3.
    Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; John Wiley & Sons, Inc.: New York, 1984, Vol. 1, p. 1.Google Scholar
  4. 4.
    Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A., Pearson, W. H., Eds.; Wiley: Hoboken, 2003.Google Scholar
  5. 5.
    Houk, K. N.; Yamaguchi, K. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; John Wiley & Sons, Inc.: New York, 1984, Vol. 2, p. 407.Google Scholar
  6. 6.
    Sustmann, R. Tetrahedron Lett. 1971, 12, 2717.CrossRefGoogle Scholar
  7. 7.
    Sustmann, R. Tetrahedron Lett. 1971, 12, 2721.CrossRefGoogle Scholar
  8. 8.
    Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 129, 10646.CrossRefGoogle Scholar
  9. 9.
    Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10187.CrossRefPubMedGoogle Scholar
  10. 10.
    Grashey, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; John Wiley & Sons, Inc.: New York, 1984, Vol. 1, p. 733.Google Scholar
  11. 11.
    Schantl, J. G. In Science of Synthesis: Houben–Weyl Methods of Organic Transformations; Padwa, A., Ed.; Thieme: Stuttgart, 2004, Vol. 27, p. 731.Google Scholar
  12. 12.
    Nájera, C.; Sansano, J. M.; Yus, M. Org. Biomol. Chem. 2015, 13, 8596.CrossRefPubMedGoogle Scholar
  13. 13.
    Potts, K. T. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; John Wiley & Sons, Inc.: New York, 1984, Vol. 2, p. 50.Google Scholar
  14. 14.
    Elguero, J. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Elsevier Science Ltd.: Oxford, 2008, Vol. 3, p. 1.Google Scholar
  15. 15.
    Stanovnik, B.; Svete, J. In Science of Synthesis; Neier, R., Ed.; Thieme: Stuttgart, 2002, Vol. 12, p. 15.Google Scholar
  16. 16.
    Yet L. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier Science Ltd.: Oxford, 2008, Vol. 4, p. 1.Google Scholar
  17. 17.
    Kobayashi, S.; Shimizu, H.; Yamashita, Y.; Ishitani, H.; Kobayashi, J. J. Am. Chem. Soc. 2002, 124, 13678.CrossRefPubMedGoogle Scholar
  18. 18.
    Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778.CrossRefPubMedGoogle Scholar
  19. 19.
    Hashimoto, T.; Takiguchi, Y.; Maruoka, K. J. Am. Chem. Soc. 2013, 135, 11473.CrossRefPubMedGoogle Scholar
  20. 20.
    Peshkov, A. V.; Pereshivko, O. P.; Van Hove, S.; Ermolat'ev, D. C.; Van der Eycken, E. V. Synthesis 2011, 3371.Google Scholar
  21. 21.
    Huang, P.; Chen, Z.; Yang, Q.; Peng, Y. Org. Lett. 2012 , 14, 2790.CrossRefPubMedGoogle Scholar
  22. 22.
    Huang, P.; Yang, Q.; Chen, Z.; Ding, Q.; Xu, J.; Peng, Y. J. Org. Chem. 2012, 77, 8092.CrossRefPubMedGoogle Scholar
  23. 23.
    Hickmanl, A. J.; Sanford, M. S. Nature 2012, 484, 177.CrossRefGoogle Scholar
  24. 24.
    Lui, H.; Wang, Z.; Pu, S.; Lui, G. Synthesis 2014, 600.Google Scholar
  25. 25.
    Zhou, X.; Liu, M.; Luo, P.; Lai, Y.; Yang, T.; Ding, Q. Beilstein J. Org. Chem. 2014, 10, 2286.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li, S.; Luo, Y.; Wu, J. Org. Lett. 2011, 13, 4312.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang, L.; Xiao, Q.; Ye, S.; Wu, J. Chem.–Asian. J. 2012, 7, 1909.CrossRefPubMedGoogle Scholar
  28. 28.
    Jiang, L.; Yu, X.; Fang, B.; Wu, J. Org. Biomol. Chem. 2012, 10, 8102.CrossRefPubMedGoogle Scholar
  29. 29.
    (a) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles; Wiley-VCH: Weinheim, 2003. (b) Varvouniis, G.; Fiamegos, Y.; Pilidis, G. Adv. Heterocycl. Chem. 2001, 80, 73. (c) Elguero, J. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scrivenm, E. F. V., Eds.; Elsevier: Oxford, 1996, Vol. 3, p. 1.Google Scholar
  30. 30.
    (a) Radl, S. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Elsevier: Oxford, 1996, Vol. 8, p. 747. (b) Konaklieva, M. I.; Plotlin, B. J. Curr. Med. Chem.: Anti-Infect. Agents 2003, 2, 287. (c) Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789.Google Scholar
  31. 31.
    Dorn, H.; Otto, A. Angew. Chem., Int. Ed. Engl. 1968, 7, 214.CrossRefGoogle Scholar
  32. 32.
    (a) Jungheim, L. N.; Sigmund, S. K. J. Org. Chem. 1987, 52, 4007. (b) Jungheim, L. N.; Sigmund, S. K.; Jones, N. D.; Swartzendruber; J. K. Tetrahedron Lett. 1987, 28, 289. (c) Turk, C.; Stanovnik, B. Golič, L.; Golič-Grdadolnik, S. Golobič, A.; Selič, L. Helv. Chim. Acta 2001, 84, 146.Google Scholar
  33. 33.
    (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. (b) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (c) Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51.Google Scholar
  34. 34.
    Suarez, A.; Downey, C. W.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 11244.Google Scholar
  35. 35.
    Pezdirc, L.; Stanovnik, B.; Svete, J. Z. Naturforsch., B: J. Chem. Sci. 2008, 63b, 375.Google Scholar
  36. 36.
    Pezdirc, L.; Stanovnik, B.; Svete, J. Aust. J. Chem. 2009, 62, 1661.CrossRefGoogle Scholar
  37. 37.
    Pezdirc, L.; Bevk, D.; Grošelj, U.; Meden, A.; Stanovnik, B.; Svete, J. J. Comb. Chem. 2007, 9, 717.CrossRefPubMedGoogle Scholar
  38. 38.
    Pušavec, E.; Mirnik, J.; Šenica, L.; Grošelj, U.; Stanovnik, B.; Svete, J. Z. Naturforsch., B: J. Chem. Sci. 2014, 69b, 615.Google Scholar
  39. 39.
    Pušavec Kirar, E.; Grošelj, U.; Golobič, A.; Požgan, F.;Pusch, S.; Weber, C.; Andernach, L.; Štefane, B.; Opatz, T.; Svete, J. J. Org. Chem, 2016, 81, 11802.CrossRefPubMedGoogle Scholar
  40. 40.
    Pezdirc, L.; Jovanovski, V.; Bevk, D.; Jakše, R.; Pirc, S.; Meden, A.; Stanovnik, B. Svete, J. Tetrahedron 2005, 61, 3977.CrossRefGoogle Scholar
  41. 41.
    Novak, A.; Testen, A.; Bezenšek, J.; Grošelj, U.; Hrast, M.; Kasunič, M.; Gobec, S.; Stanovnik, B.; Svete, J. Tetrahedron 2013, 69, 6648.CrossRefGoogle Scholar
  42. 42.
    Grošelj, U.; Svete, J. ARKIVOC 2015, (vi), 175Google Scholar
  43. 43.
    Pušavec Kirar, E.; Grošelj, U.; Mirri, G.; Požgan, F.; Strle, G.; Štefane, B.; Jovanovski, V.; Svete, J. J. Org. Chem. 2016, 81, 5988.CrossRefPubMedGoogle Scholar
  44. 44.
    Mirnik, J.; Pušavec Kirar, E.; Ričko, S.; Grošelj, U.; Golobič, A.; Požgan, F.; Štefane, B.; Svete, J. Tetrahedron 2017, 73, 3329.CrossRefGoogle Scholar
  45. 45.
    Keller, M.; Sido, A. S. S.; Pale, P.; Sommer, J. Chem.–Eur. J. 2009, 2810.Google Scholar
  46. 46.
    Oishi, T.; Yoshimura, K.; Yamaguchi, K.; Mizuno, N. Chem. Lett. 2010, 39, 1086.CrossRefGoogle Scholar
  47. 47.
    Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2008, 47, 2407.Google Scholar
  48. 48.
    Yoshimura, K.; Oishi, T.; Yamaguchi, K.; Mizuno, N. Chem.–Eur. J. 2011, 17, 3827.CrossRefPubMedGoogle Scholar
  49. 49.
    Shao, C.; Zhang, Q.; Cheng, G.; Cheng, C.; Wang, X.; Hu, Y. Eur. J. Org. Chem. 2013, 6443.Google Scholar
  50. 50.
    Xianglong, C.; Chunman, J.; Li, C.; Dela, Z.; Shuixiang, L.; Qi, Z. Chem. Res. Chin. Univ. 2015, 31, 543.CrossRefGoogle Scholar
  51. 51.
    Imaizumi, T.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2012, 134, 20049.CrossRefPubMedGoogle Scholar
  52. 52.
    Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338.CrossRefPubMedGoogle Scholar
  53. 53.
    Arai, T.; Ogino, Y. Molecules 2012, 17, 6170.CrossRefPubMedGoogle Scholar
  54. 54.
    Arai, T.; Ogino, Y.; Sato, T. Chem. Commun. 2013, 49, 7776.CrossRefGoogle Scholar
  55. 55.
    Pušavec Kirar, E.; Drev, M.; Mirnik, J.; Grošelj, U.; Golobič, A.; Dahmann, G.; Požgan, F.; Štefane, B.; Svete, J. J. Org. Chem. 2016, 81, 8920.CrossRefPubMedGoogle Scholar
  56. 56.
    Specklin, S.; Decuypere, E.; Plougastel, L.; Aliani, S.; Taran, F. J. Org. Chem. 2014, 79, 7772.CrossRefPubMedGoogle Scholar
  57. 57.
    Kolodych, S.; Rasolofonjatova, E.; Chaumontet, M.; Nevers, M.-C.; Créminon, C.; Taran, F. Angew. Chem., Int. Ed. 2013, 52, 12056.CrossRefGoogle Scholar
  58. 58.
    Lui, H.; Audisio, D.; Plougastel, L.; Decuypere, E.; Buisson, D.-A.; Koniev, O.; Kolodych, S.; Wagner, A.; Elhabiri, M.; Krzyczmonik, A.; Forsback, S.; Solin, O.; Gouverneur, V.; Taran, F. Angew. Chem., Int. Ed. 2016, 55, 12073.CrossRefGoogle Scholar
  59. 59.
    Wezeman, T.; Comas-Barcelo, J.; Nieger, M.; Harrity, J. P. A.; Bräse, S. Org. Biomol. Chem. 2017, 15, 1575.CrossRefPubMedGoogle Scholar
  60. 60.
    Comas-Barceló, J.; Foster, R.; Fiser, B.; Gomez-Bengoa, E.; Harrity, J. P. A. Chem.–Eur. J. 2015, 21, 3257.CrossRefPubMedGoogle Scholar
  61. 61.
    Gergely, J.; Morgan, J. B.; Overman, L. E. J. Org. Chem. 2006, 71, 9144.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kobayashi, S.; Hirabayashi, R.; Shimizu, H.; Ishitani, H.; Yamashita, Y. Tetrahedron Lett. 2003, 44, 3351.CrossRefGoogle Scholar
  63. 63.
    Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 11279.CrossRefPubMedGoogle Scholar
  64. 64.
    Zamfir, A.; Tsogoeva, S. B. Synthesis 2011, 1988.Google Scholar
  65. 65.
    Xie, H.; Zhu, J.; Chen, Z.; Li, S.; Wu, Y. Synthesis 2011, 2767.Google Scholar
  66. 66.
    Shirakawa, S.; Lombardi, P. J.; Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 9974.CrossRefPubMedGoogle Scholar
  67. 67.
    Tran, K.; Leighton, J. L. Adv. Synth. Catal. 2006, 348, 2431.CrossRefGoogle Scholar
  68. 68.
    Tran, K.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2008, 10, 3165.CrossRefPubMedGoogle Scholar
  69. 69.
    Faulkner, D. J. Nat. Prod. Rep. 1998, 15, 113.CrossRefGoogle Scholar
  70. 70.
    Milosevic, S.; Togni, A. J. Org. Chem. 2013, 78, 9638.CrossRefPubMedGoogle Scholar
  71. 71.
    Hashimoto, T.; Maeda, Y.; Omote, M.; Nakatsu, H.; Maruoka, K. J. Am. Chem. Soc. 2010, 132, 4076.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhang, D.; Zhang, D.-M.; Xu, G.-Y.; Sun, J.-T. Chin. Chem. Lett. 2015, 26, 301.CrossRefGoogle Scholar
  73. 73.
    Sibi, M. P.; Rane, D.; Stanley, L. M.; Soeta, T. Org. Lett. 2008, 10, 2971.CrossRefPubMedGoogle Scholar
  74. 74.
    Suga, H.; Funyu, A.; Kakehi, A. Org. Lett. 2007, 9, 97.CrossRefPubMedGoogle Scholar
  75. 75.
    Li, J.; Lian, X.; Liu, X.; Lin, L.; Feng, X. Chem.–Eur. J. 2013, 19, 5134.CrossRefPubMedGoogle Scholar
  76. 76.
    Yin, C.; Lin, L.; Zhang, D.; Feng, J.; Liu, X.; Feng, X. J. Org. Chem. 2015, 80, 9691.CrossRefPubMedGoogle Scholar
  77. 77.
    Kato, T.; Fujinami, S.; Ukaji, Y.; Inomata, K. Chem. Lett. 2008, 37, 342.CrossRefGoogle Scholar
  78. 78.
    Thi Tong, T. M.; Soeta, T.; Suga, T.; Kawamoto, K.; Hayashi, Y.; Ukaji, Y. J. Org. Chem. 2017, 82,1969.CrossRefGoogle Scholar
  79. 79.
    Tanaka, K.; Kato, T.; Fujinami, S.; Ukaji, Y.; Inomata, K. Chem. Lett. 2010, 39, 1036.CrossRefGoogle Scholar
  80. 80.
    Yoshida, M.; Sassa, N.; Kato, T.; Fujinami, S.; Soeta, T.; Inomata, K.; Ukaji, Y. Chem.–Eur. J. 2014, 20, 2058.Google Scholar
  81. 81.
    Zhou, W.; Li, X.-X.; Li, G.-H.; Wu, Y.; Chen, Z. Chem. Commun. 2013, 49, 3552.CrossRefGoogle Scholar
  82. 82.
    Smirnov, A. S.; Kritchenkov, A. S.; Bokach, N. A.; Kuznetsov, M. L.; Selivanov, S. I.; Gurzhiy, V. V.; Roodt, A.; Kukushkin, V. Yu. Inorg. Chem. 2015, 54, 11018.CrossRefPubMedGoogle Scholar
  83. 83.
    Zhao, H.-W.; Li, B.; Pang, H.-L.; Tian, T.; Chen, X.-Q.; Song, X.-Q.; Meng, W.; Yang, Z.; Zhao, Y.-D.; Liu, Y.-Y. Org. Lett. 2016, 18, 848.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Uroš Grošelj
    • 1
  • Jurij Svete
    • 1
  • Hamad H. Al Mamari
    • 2
  • Franc Požgan
    • 1
  • Bogdan Štefane
    • 1
    • 2
    Email author
  1. 1.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of Chemistry, College of ScienceSultan Qaboos UniversityMuscatOman

Personalised recommendations