Chemistry of Heterocyclic Compounds

, Volume 54, Issue 2, pp 138–145 | Cite as

Synthesis of new hexahydro-5H-indolo[3,2-c]acridines and indolylbutanoic acids by Fischer cyclization of arylhydrazones

  • Ekaterina V. Zaliznaya
  • Nikolai V. Smetanin
  • Svetlana A. Varenichenko
  • Alexandr V. Mazepa
  • Oleg K. Farat
  • Victor I. Markov

Arylhydrazones of 2,3,5,6,7,8-hexahydroacridin-4(1H)-ones and 7-amino-6-(arylhydrazono)-7-oxoheptanoic acids were cyclized by Fischer reaction, providing previously unknown polysubstituted indole derivatives. The starting hydrazones were synthesized under Japp–Klingemann reaction conditions by using 1,2,3,4,5,6,7,8-octahydroacridine-4-carboxamide and 2-oxocyclohexanecarboxamide as starting materials. It was established from the spectral data that the obtained 7-amino-6-(arylhydrazono)-7-oxoheptanoic acids existed as mixtures of (Z)- and (E)-isomers, but were converted to an individual (Z)- or (E)-isomer in DMSO solution.


diazonium salt octahydroacridines substituted indoles azo coupling electrophilic substitution Fischer reaction Japp–Klingemann reaction 


The authors would like to express their gratitude to Candidate of Chemical Sciences N. E. Borisova for performing NMR experiments. NMR spectra were acquired at the Laboratory of Magnetic Tomography and Spectroscopy, Department of Chemistry, Moscow State University.

This work received financial support from the Ministry of Education and Science of Ukraine within the framework of the State budget item No. 0115U003159 “New synthetic methods for the design of nitrogen- and sulfur-containing biologically active compounds”.

Supplementary material

10593_2018_2245_MOESM1_ESM.pdf (3.2 mb)
ESM 1 (PDF 3226 kb)


  1. 1.
    Bhat, V.; Dave, A.; MacKay, J. A.; Rawal, V. H. In The Alkaloids: Chemistry and Biology; Elsevier, 2014, Vol. 73, p. 65.Google Scholar
  2. 2.
    Heravi, M. M.; Rohani, S.; Zadsirjan, V.; Zahedi, N. RSC Adv. 2017, 7, 52852.CrossRefGoogle Scholar
  3. 3.
    Park, N. I.; Kim, J. K.; Park, W. T.; Cho, J. W.; Lim, Y. P.; Park, S. U. Mol. Biol. Rep. 2010, 38, 4947.CrossRefGoogle Scholar
  4. 4.
    Wang, F.-Q.; Yang, H.; He, B.; Jia, Y.-K.; Meng, S.-Y.; Zhang, C.; Liu, H.-M.; Liu, F.-W. Tetrahedron 2016, 72, 5769.CrossRefGoogle Scholar
  5. 5.
    Haase, A. F.; Greiner, H. E.; Seyfried, C. A. Naunyn-Schmiedeberg's Arch. Pharmacol. 1991, 343, 588.CrossRefGoogle Scholar
  6. 6.
    Bartoszyk, G. D.; Hegenbart, R.; Ziegler, H. Eur. J. Pharmacol. 1997, 322, 147.CrossRefGoogle Scholar
  7. 7.
    Teng, X.; Degterev, A.; Jagtap, P.; Xing, X.; Choi, S.; Denu, R.; Yuan, J.; Cuny, G. D. Bioorg. Med. Chem. Lett. 2005, 15, 5039.CrossRefGoogle Scholar
  8. 8.
    Sundberg, R. J. Indoles; Academic Press: London, 1996.Google Scholar
  9. 9.
    Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000, 1045.CrossRefGoogle Scholar
  10. 10.
    Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 2001, 2491.CrossRefGoogle Scholar
  11. 11.
    Tokuyama, H. J. Synth. Org. Chem., Jpn. 2015, 73, 1120.CrossRefGoogle Scholar
  12. 12.
    Kotha, S.; Aswar, V. R.; Singhal, G. Tetrahedron 2017, 73, 6436.CrossRefGoogle Scholar
  13. 13.
    Park, J.; Kim, D.-H.; Das, T.; Cho, C.-G. Org. Lett. 2016, 18, 5098.CrossRefGoogle Scholar
  14. 14.
    Smith, J. M.; Moreno, J.; Boal, B. W.; Garg, N. K. J. Org. Chem. 2015, 80, 8954.CrossRefGoogle Scholar
  15. 15.
    Zaliznaya, E. V.; Farat, O. K.; Gorobets, N. Yu.; Markov, V. I.; Zubatyuk, R. I.; Mazepa, A. V.; Vashchenko, E. V. Chem. Heterocycl. Compd. 2015, 51, 327. [Khim. Geterotsikl. Soedin. 2015 , 51, 327.]Google Scholar
  16. 16.
    Bouveault, L. Bull. Soc. Chim. Fr. 1893, 9, 368.Google Scholar
  17. 17.
    Kezdy F. J.; Jaz, J.; Bruylants, A. Bull. Soc. Chim. Belg. 1958, 67, 687.CrossRefGoogle Scholar
  18. 18.
    Wade, L. G., Jr.; Silvey, W. B. Org. Prep. Proced. Int. 1982, 14, 357.CrossRefGoogle Scholar
  19. 19.
    Sundberg, R. J. Indoles; Academic Press: London, 1996, p. 54.Google Scholar
  20. 20.
    Thummel, R. P.; Hegde, V. J. Org. Chem. 1989, 54, 1720.CrossRefGoogle Scholar
  21. 21.
    Pete, B.; Parlagh, G. Tetrahedron 2004, 60, 8829.CrossRefGoogle Scholar
  22. 22.
    Pete, B.; Tőke, L. Tetrahedron Lett. 2001, 42, 3373.CrossRefGoogle Scholar
  23. 23.
    Pete, B.; Parlagh, G. A. Tetrahedron Lett. 2003, 44, 2537.CrossRefGoogle Scholar
  24. 24.
    Heinrich, T.; Böttcher, H. Bioorg. Med. Chem. Lett. 2004, 14, 2681.CrossRefGoogle Scholar
  25. 25.
    Maas, G. In Encyclopedia of Reagents for Organic Synthesis; John Wiley and Sons, Inc., 2001, p. 1–4.Google Scholar
  26. 26.
    Murphyt, W. H.; Jenkins, G. L. J. Am. Pharm. Assoc. 1943, 32, 83.CrossRefGoogle Scholar
  27. 27.
    Pete, B.; Varga, F.; Kovács, J. A. J. Heterocycl. Chem. 2004, 42, 615.CrossRefGoogle Scholar
  28. 28.
    Phillips, R.; Adams, R. Organic Reactions [Russian translation]; IL: Moscow, 1963, Vol. 10, p. 148.Google Scholar
  29. 29.
    Ponticello, G. S.; Baldwin, J. J.; Lumma, P. K.; McClure, D. E. J. Org. Chem. 1980, 45, 4236.CrossRefGoogle Scholar
  30. 30.
    Bischoff, C.; Herma, H. J. Рrakt. Chem. 1976, 318, 773.CrossRefGoogle Scholar
  31. 31.
    Markov, V. I.; Farat, O. K. Chem. Heterocycl. Compd. 2012, 48, 925. [Khim. Geterotsikl. Soedin. 2012, 995.]Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ekaterina V. Zaliznaya
    • 1
  • Nikolai V. Smetanin
    • 1
  • Svetlana A. Varenichenko
    • 1
  • Alexandr V. Mazepa
    • 2
  • Oleg K. Farat
    • 3
  • Victor I. Markov
    • 1
  1. 1.Ukrainian State University of Chemical TechnologyDniproUkraine
  2. 2.A. V. Bogatsky Physico-Chemical InstituteNational Academy of Sciences of UkraineOdessaUkraine
  3. 3.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations