Advertisement

Chemistry of Heterocyclic Compounds

, Volume 53, Issue 12, pp 1277–1279 | Cite as

1,4-Diazabicyclo[2.2.2]octane in the synthesis of piperazine derivatives (microreview)

  • Dmitry I. BugaenkoEmail author
Article

Open image in new window

A new methodology for the synthesis of piperazine derivatives is analyzed, starting from 1,4-diazabicyclo[2.2.2]octane as the source of piperazine ring and quaternary ammonium salts obtained from 1,4-diazabicyclo[2.2.2]octane as synthetic intermediates. This microreview summarizes literature data published over the last 15 years.

References

  1. 1.
    De Rycke, N.; Couty, F.; David, O. R. P. Chem.–Eur. J. 2011, 17, 12852.CrossRefGoogle Scholar
  2. 2.
    Crampton, M. R.; Robotham, I. A. J. Chem. Res., Synop. 1997, 22.Google Scholar
  3. 3.
    (a) Barham, J. P.; John, M. P.; Murphy, J. A. J. Am. Chem. Soc. 2016, 138, 15482. (b) Xiong, H.; Hoye, A. T.; Fan, K.-H.; Li, X.; Clemens, J.; Horchler, C. L.; Lim, N. C.; Attardo, G. Org. Lett. 2015, 17, 3726. (c) Shi, Y.-J.; Humphrey, G.; Maligres, P. E.; Reamer, R. A.; Williams, J. M. Adv. Synth. Catal. 2006, 348, 309. (d) Zhao, J.; Peng, C.; Liu, L.; Wang, Y.; Zhu, Q. J. Org. Chem. 2010, 75, 7502.Google Scholar
  4. 4.
    (a) Baghernejad, B. Eur. J. Chem. 2010, 1, 54. (b) Mallavadhani, U. V.; Fleury-Bregeot, N. e-EROS Encyclopedia of Reagents for Organic Synthesis, 1,4-Diazabicyclo[2.2.2]-octane; John Wiley & Sons, 2001.Google Scholar
  5. 5.
    Majee, D.; Biswas, S.; Mobin, S. M.; Samanta, S. Org. Biomol. Chem. 2017, 15, 3286.CrossRefGoogle Scholar
  6. 6.
    Ni, C.; Wang M.; Tong X. Org. Lett. 2016, 18, 2240.CrossRefGoogle Scholar
  7. 7.
    (a) Zhang, J.; Tang, Y.; Wei, W.; Wu, Y.; Li, Y.; Zhang, J.; Zhang Y.; Xu, S. Org. Lett. 2017, 19, 3043. (b) Liu, J.; Ye, W.; Qing X.; Wang, C. J. Org. Chem. 2016, 81, 7970.Google Scholar
  8. 8.
    Gettys, K. E.; Ye, Z.; Dai, M. Synthesis 2017, 2589.Google Scholar
  9. 9.
    Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.CrossRefGoogle Scholar
  10. 10.
    Maraš, N.; Polanc, S.; Kočevar, M. Org. Biomol. Chem. 2012, 10, 1300.CrossRefGoogle Scholar
  11. 11.
    Dong, H.-R.; Chen, Z.-B.; Li, R.-S.; Dong, H.-S.; Xie, Z.-X. RSC Adv. 2015, 5, 10768.CrossRefGoogle Scholar
  12. 12.
    Ross, S. D.; Finkelstein, M. J. Am. Chem. Soc. 1963, 85, 2603.CrossRefGoogle Scholar
  13. 13.
    Ibata, T.; Isogami, Y.; Toyoda, J. Chem. Lett. 1987, 1187.Google Scholar
  14. 14.
    Gladstone, S. G.; Earley, W. G.; Acker, J. K.; Martin G. S. Tetrahedron Lett. 2009, 50, 3813.CrossRefGoogle Scholar
  15. 15.
    Wang, H.-J.; Wang, Y.; Csakai, A. J.; Earley, W. G.; Herr, R. J. J. Comb. Chem. 2009, 11, 355.CrossRefGoogle Scholar
  16. 16.
    Wang, H.-J.; Earley, W. G.; Lewis, R. M.; Srivastava, R. R.; Zych, A. J.; Jenkins, D. M.; Fairfax, D. J. Tetrahedron Lett. 2007, 48, 3043.CrossRefGoogle Scholar
  17. 17.
    Koyioni, M.; Manoli, M.; Koutentis, P. A. J. Org. Chem. 2016, 81, 615.CrossRefGoogle Scholar
  18. 18.
    Zhu, Q.; Yuan, Q.; Chen, M.; Guo, M.; Huang, H. Angew. Chem., Int. Ed. 2017, 56, 5101.CrossRefGoogle Scholar
  19. 19.
    Bugaenko, D. I.; Yurovskaya, M. A.; Karchava, A. V. J. Org. Chem. 2017, 82, 2136.CrossRefGoogle Scholar
  20. 20.
    Ross, S. P.; Hoye, T. R. Nat. Chem. 2017, 9, 523.CrossRefGoogle Scholar
  21. 21.
    Yavari, I.; Bayat, M. J.; Ghazanfarpour-Darjani, M. Tetrahedron Lett. 2014, 55, 5595.CrossRefGoogle Scholar
  22. 22.
    Boursalian, G. B.; Ham, W. S.; Mazzotti, A. R.; Ritter, T. Nat. Chem. 2016, 8, 810.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations