Skip to main content
Log in

Synthesis, structure, and properties of luminescent diazaborole and indole systems

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Thiophenes and phenylacetylenes, decorated with 1-methylindol-2-yl, 1,3,2-benzodiazaborol-2-yl, 1,3,2-diazaborol-2-yl, or 1,3,2-diazaborolidinyl groups at one end and dimesitylborolyl or CN substituents at the opposite end of the molecules, were synthesized. Upon UV irradiation, these push-pull systems in THF solution gave rise to bright-blue emission with Stokes shifts ranging from 4100 to 9300 cm–1 and quantum efficiencies up to 0.99. Thereby intramolecular charge transfer took place from the HOMO of the indolyl or borolyl fluorophores to the LUMO, mainly centered on the electron-withdrawing cyano or dimesitylboranyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. (a) Entwistle, C. D.; Marder, T. B. Angew. Chem., Int. Ed. 2002, 41, 2927. (b) Entwistle, C. D.; Marder, T. B. Chem. Mater. 2004, 16, 4574. (c) Yamaguchi, S.; Wakayama, A. Pure Appl. Chem. 2006, 78, 1413. (d) Jäkle, F. Coord. Chem. Rev. 2006, 250, 1107.

  2. (a) Yuan, Z.; Taylor, N. J.; Marder, T. B.; Williams, D. S.; Kurtz, S. K.; Cheng, L.-T. J. Chem. Soc., Chem. Commun. 1990, 1489. (b) Yuan, Z; Taylor, N. J.; Marder, T. B.; Williams, I. D.; Kurtz, S. K.; Cheng, L-T. Organic Materials for Non-Linear Optic II; Hann, R. A.; Bloor, D., Eds.; Royal Society of Chemistry: Cambridge, 1991, p. 190. (c) Lequan, M.; Lequan, R. M.; Chane-Ching, K. J. Mater. Chem. 1991, 1, 997. (d) Lequan, M.; Lequan, R. M.; Chane-Ching, K.; Barzoukas, M.; Fort, A ; Lahoucine, H.; Bravic, G.; Chasseau, J.; Gaultier, J. J Mater. Chem. 1992, 2, 719. (e) Lequan, M.; Lequan, R. M.; Chang-Ching, K.; Callier, A.-C.; Barzoukas, M.; Fort, A. Adv. Mater. Opt. Electron. 1992, 1. 243. (f) Yuan, Z.; Taylor, N. J.; Sun, Y.; Marder, T. B.; Williams, I. D.; Cheng, L.-T. J. Organomet. Chem. 1993, 449, 27. (g) Branger, C.; Lequan, M.; Lequan, R. M.; Barzoukas, M.; Fort, A. J. Mater. Chem. 1996, 6, 555. (h) Yuan, Z.; Taylor, N. J.; Ramachandran, R.; Marder, T. B. Appl. Organomet. Chem. 1996, 10, 305. (i) Yuan, Z.; Collings, J. C.; Taylor, N. J.; Marder, T. B.; Jardin, C.; Halet, J.-F. J. Solid State Chem. 2000, 154, 5. (j) Liu, Y.; Xu, X; Zheng, F.; Cui, Y. Angew. Chem., Int. Ed. 2008, 47, 4538.

  3. Yuan, Z.; Entwistle, C. D.; Collings, J. C.; Albesa-Jové, D.; Batsanov, A. S.; Howard, J. A. K.; Taylor, N. J.; Kaiser, K. M.; Kaufmann, D. E.; Poon, S.-Y.; Wong, W. J.; Jardin, C.; Fathallah, S.; Boucekkine, A.; Halet, J.-F.; Marder, T. B. Chem.–Eur. J. 2006, 12, 2758.

    Article  CAS  Google Scholar 

  4. (a) Liu, Z .Q.; Fang, Q.; Wang, D.; Xue, G.; Yu, W. T.; Shao, Z. S.; Jiang, M.-H. Chem. Commun. 2002, 2900. (b) Liu, Z.-Q.; Fang, Q.; Cao, D. X.; Xue, G.; Yu, W. T.; Lei, H. Chem.–Eur. J. 2003, 9, 5074. (c) Cao, D. X.; Liu, Z.-Q.; Fang, Q.; Xu, G.-B.; Xue, G.; Liu, G.-Q.; Yu, W.-T. J. Organomet. Chem. 2004, 689, 2201. (d) Liu, Z.-Q.; Fang, Q.; Cao, D.-X.; Wang, D.; Xu, G.-B. Org. Lett. 2004, 6, 2933. (e) Liu, Z.-Q.; Shi, M.; Li, F.-Y.; Fang, Q.; Chen, Z.-H.; Yi, T.; Huang, C.-H. Org. Lett. 2005, 7, 5481. (f) Charlot, M.; Porrès, L.; Entwistle, C. D.; Beeby, A.; Marder, T. B.; Blanchard-Desce, M. Phys. Chem. Chem. Phys. 2005, 7, 600. (g) Porrès, L.; Charlot, M.; Entwistle, C. D.; Beeby, A.; Marder, T. B.; Blanchard-Desce, M. Proc. SPIE-Int. Soc. Opt. Eng. 2005, 5934, 59340F. (h) Cao, D.-X.; Liu, Z.-Q; Li, G.-Z.; Liu, G.-Q.; Zhang, G.-H. J. Mol. Struct. 2008, 874, 46. (i) Collins, J. C.; Poon, S.-Y.; Le Droumaguet, C.; Charlot, M.; Katan, C.; Pålsson, L.-O.; Beeby, A.; Mosely, J. A.; Kaiser, H. M.; Kaufmann, D.; Wong, W.-Y.; Blanchard-Desce, M.; Marder, T. B. Chem.–Eur. J. 2009, 15, 198. (j) Zhao, S.-B.; Wucher, P.; Mc Cormick, T. M.; Liu, X.-Y.; Wang, S.; Feng, X.-D.; Lu, Z.-H.; Organometallics 2008, 27, 6446.

  5. (a) Noda, T.; Shirota, Y. J. Am. Chem. Soc. 1998, 120, 9714. (b) Noda, T.; Ogawa, H.; Shirota, Y. Adv. Mater. 1999, 11, 283. (c) Noda, T.; Shirota, Y. J. Lumin. 2000, 87–89, 1168. (d) Shirota, Y.; Kinoshita, M.; Noda, T.; Okumoto, K.; Ohara, T. J. Am. Chem. Soc. 2000, 122, 11021. (e) Kinoshita, M.; Fujii, N.; Tsuzuki, T.; Shirota, Y. Synth. Met. 2001, 121, 1571. (f) Doi, H.; Kinoshita, M.; Okumotu, K.; Shirota, Y. Chem. Mater. 2003, 15, 1080. (g) Jia, W.-L.; Bai, D.-R.; Mc Cormick, T.; Liu, Q.-D.; Motala, M.; Wang, R.-Y.; Seward, C.; Tao, Y; Wang, S. Chem.–Eur. J. 2004, 10, 994. (h) Jia, W.-L.; Feng, D.; Bai, D. R.; Lu, Z.-H.; Wang, S.; Vamvounis, G. Chem. Mater. 2005, 17, 164. (i) Mazzeo, M.; Vitale, V.; Della Sala, F.; Anni, M.; Barbarella, G.; Favaretto, L.; Sotgui, G.; Cingolani, R.; Gigli, G. Adv. Mater. 2005, 17, 34. (j) Zhou, G.-J.; Ho, C.-L.; Wong, W.-Y.; Wang, Q.; Ma, D.-G.; Wang, L.-X.; Lin, Z.-Y.; Marder, T. B.; Beeby, A. Adv. Funct. Mater. 2008, 18, 499.

  6. Glogowski, M. E.; Williams, J. L. R. J. Organomet. Chem. 1981, 218, 137.

    Article  CAS  Google Scholar 

  7. Schulz, A.; Kaim, W. Chem. Ber. 1989, 122, 1863.

    Article  CAS  Google Scholar 

  8. Zhao, C. H.; Wakamiya, A.; Inukai, Y.; Yamaguchi, S. J. Am. Chem. Soc. 2006, 128, 15934.

    Article  CAS  Google Scholar 

  9. Wakamiya, A.; Mori, K.; Yamaguchi, S. Angew. Chem., Int. Ed. 2007, 46, 4273.

    Article  CAS  Google Scholar 

  10. (a) Weber, L. Coord. Chem. Rev. 2001, 215, 39. (b) Weber, L. Coord. Chem. Rev. 2008, 252, 1. (c) Weber, L.; Böhling, L. Coord. Chem. Rev. 2015, 284, 236. (d) Weber, L. Eur. J. Inorg. Chem. 2012, 5595. (e) Yamashita, M.; Nozaki, K. J. Synth. Org. Chem. Jpn. 2010, 68, 359. (f) Yamashita, M.; Nozaki, K. Bull. Chem. Soc. Jpn. 2008, 81, 1377. (h) Weber, L.; Wartig, H. B.; Stammler, H.-G.; Neumann, B. Organometallics 2001, 20, 5248. (i) Weber, L.; Wartig, H. B.; Stammler, H.-G.; Neumann, B. Z. Anorg. Allg. Chem. 2001, 627, 2663. (j) Weber, L.; Domke, I; Greschner, W.; Miqueu, K.; Chrostowska, A.; Baylère, P. Organometallics 2005, 24, 5455.

  11. (a) Habereder, T.; Nöth, H. Appl. Organomet. Chem. 2003, 17, 525. (b) Weber, L.; Domke, I.; Kahlert, J.; Stammler, H.-G. Eur. J. Inorg. Chem. 2006, 3419. (c) Weber, L.; Rausch, A; Stammler, H.-G.; Neumann, B. Z. Anorg. Allg. Chem. 2004, 630, 2657. (d) Weber, L.; Förster, J.; Stammler, H.-G.; Neumann, B. Eur. J. Inorg. Chem. 2006, 5048. (e) Weber, L.; Schnieder, M.; Maciel, T. C.; Wartig, H.; Schimmel, M.; Boese, R.; Bläser, D. Organometallics 2000, 19, 5791. (f) Murphy, J. M.; Lawrence, J. D.; Kawamura, K.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 13684. (g) Segawa, Y.; Yamashita, M.; Nozaki, K. Science 2006, 314, 113. (h) Marder, T. B. Science 2006, 314, 69. (i) Braunschweig, H. Angew.Chem., Int. Ed. 2007, 46, 1946. (j) Segawa, Y.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2007, 46, 6710. (k) Kajiwara, T.; Terebayashi, T.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2008, 47, 606. (l) Segawa, Y.; Suzuki, Y; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2008, 130, 16069. (m) Yamashita, M.; Suzuki, Y.; Segawa, Y.; Nozaki, K. Chem. Lett. 2008, 37, 802. (n) Terebayashi, T.; Kajiwara, T.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14162. (o) Nozaki, K.; Arami, Y.; Yamashita, M.; Ueng, S.-H.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 11449. (p) Hayashi, Y.; Segawa, Y.; Yamashita, M.; Nozaki, K. Chem. Commun. 2011, 47, 5888. (q) Segawa, Y.; Yamashita, M.; Nozaki, K. Organometallics 2009, 28, 6234. (r) Hasegawa, M.; Segawa, Y.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2012, 51, 6956. (s) Dettenrieder, H.; Dietrich , H. M.; Schädle, C.; Maichle-Mössmer, C.; Törnroos, K. W.; Anwander, R. Angew. Chem., Int. Ed. 2012, 51, 4461. (t) Protochenko, A. V.; Birjkumar, K. H.; Dange, D.; Schwarz, A. D.; Vidovic, D.; Jones, C.; Kaltsoyannis, N.; Mountford, P.; Aldridge, S. J. Am. Chem. Soc. 2012, 134, 6500. (u) Saleh, L. M. A.; Nirjkumar, K. H.; Protochenko, A. V.; Schwarz, A. D.; Aldridge, S.; Jones, C.; Kaltsoyannis, N.; Mountford, P. J. Am. Chem. Soc. 2011, 133, 3836. (v) Li, S.; Cheng, J.; Chen, Y.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2011, 50, 6360. (w) Tian, D.; Jiang, J.; Hu, H.; Zhang, J.; Cui, C. J. Am. Chem. Soc. 2012, 134, 14666. (x) Hinchcliffe, A.; Mair, F. S.; McInnes, E. J. L.; Pritchard, R. G.; Warren, J. E. Dalton Trans. 2008, 222. (y) Giziroglu, E.; Donnadieu, B.; Bertrand, G. Inorg. Chem. 2008, 47, 9751.

  12. (a) Weber, L.; Penner, A.; Stammler, H.-G.; Neumann, B. Z. Anorg. Allg. Chem. 2007, 633, 563. (b) Weber, L.; Eickhoff, D.; Werner, V.; Böhling, L.; Schwedler, S.; Chrostowska, A.; Dargelos, A.; Maciejczyk, M.; Stammler, H.-G.; Neumann, B. Dalton Trans. 2011, 40, 4434. (c) Schwedler, S.; Eickhoff, D.; Brockhinke, R.; Cherian, D.; Weber, L.; Brockhinke, A. Phys. Chem. Chem. Phys. 2011, 13, 9301. (d) Weber, L.; Werner, V.; Domke, I.; Stammler, H.-G.; Neumann, B. Dalton Trans. 2006, 3777. (e) Chrostowska, A.; Maciejczyk, M.; Dargelos, A.; Baylère, P.; Weber, L.; Werner, V.; Eickhoff, D.; Stammler, H.-G.; Neumann, B. Organometallics 2010, 29, 5192.

  13. Weber, L.; Werner, V.; Fox, M. A.; Marder, T. B.; Schwedler, S.; Brockhinke, A.; Stammler, H.-G.; Neumann, B. Dalton Trans. 2009, 2823.

  14. (a) Weber, L.; Halama, J.; Böhling, L.; Brockhinke, A.; Chrostowska, A.; Darrigan, C.; Dargelos, A.; Stammler, H.-G.; Neumann, B. Eur. J. Inorg. Chem. 2013, 4268. (b) Weber, L.; Halama, J.; Hanke, K.; Böhling, L.; Brockhinke, A.; Stammler, H.-G.; Neumann, B.; Fox, M. A. Dalton Trans. 2014, 43, 3347.

  15. (a) Marsden, J. A.; Miller, J. J.; Shirtcliff, L. D.; Haley, M. M. J. Am. Chem. Soc. 2005, 127, 2464. (b) Grabarz, A. M.; Laurent, A. D; Jędrzejewska, B.; Zakrewska, A.; Jacquemin, D.; Ośmiałowski, B. J. Org. Chem. 2016, 81, 2280.

  16. (a) Weber, L.; Eickhoff, D.; Marder, T. B.; Fox, M. A.; Low, P. J.; Dwyer, A. D.; Tozer, D. J.; Schwedler, S.; Brockhinke, A.; Stammler, H.-G.; Neumann, B. Chem.–Eur. J. 2012, 18, 1369. (b) Weber, L.; Eickhoff, D.; Kahlert, J.; Böhling, L.; Brockhinke, A.; Stammler, H.-G.; Neumann, B.; Fox, M. A. Dalton Trans. 2012, 41, 10328.

  17. (a) Bosdet, M. J. D.; Piers, W. E. Can. J. Chem. 2009, 87, 8. (b) Campbell, P. G.; Marwitz, A. J.; Liu, S.-Y. Angew. Chem., Int. Ed. 2012, 51, 6074. (c) Abbey, E. R.; Liu, S.-Y. Org. Biomol. Chem. 2013, 11, 2060. (d) Schäfer, M.; Schäfer, J.; Dewhurst, R. D.; Ewing, W. C.; Krahfuß, M.; Kuntze- Fechner, M. W.; Wehner, M.; Lambert, C.; Braunschweig, H. Chem.–Eur. J. 2016, 22, 8603

  18. Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic Press: London, 1988, p. 428.

    Google Scholar 

  19. Bergmann, J.; Venemalm, L. J. Org. Chem. 1992, 57, 2495.

    Article  Google Scholar 

  20. An, Z.; Odom, S. A.; Kelley, R. F.; Huang, C.; Zhang, X.; Barlow, S.; Padilha, L. A.; Fu, J.; Webster, S.; Hagan, D. J.; Van Stryland, E. W.; Wasielewsky, M. R.; Marder, S. R. J. Phys. Chem. A 2009, 113, 5585.

    Article  CAS  Google Scholar 

  21. Blackburn, B. K.; Lee, A.; Baier, M.; Kohl, B.; Olivere, A. G.; Matamaros, R.; Robarge, K. D.; Mc Dowell, R. S. J. Med. Chem. 1997, 40, 717.

    Article  CAS  Google Scholar 

  22. Weber, L.; Dobbert, E.; Stammler, H.-G.; Neumann, B.; Boese, R.; Bläser, D. Chem. Ber. 1997, 130, 705.

    Article  CAS  Google Scholar 

  23. Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64A, 112.

    Article  Google Scholar 

  24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision B.01; Gaussian, Inc.: Wallingford, 2009.

  25. Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.

    Article  Google Scholar 

  26. (a) Parr, R. G.; Yang, W. Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989. (b) Frisch, M. J.; Trucks, G. W.; Cheeseman, J. R. In Recent Development and Applications of Modern Density Functional Theory, Theoretical and Computational Chemistry; Semminario, J. M., Ed.; Elsevier: Amsterdam–Lausanne–New York–Oxford–Shannon–Tokyo, 1996, Vol. 4, p. 679. (c) Limacher, P. A.; Mikkelsen, K. V.; Lüthi, H. P. J. Chem. Phys. 2009, 130, 194114. (d) Kobayashi, R.; Amos, R. D. Chem. Phys. Lett. 2006, 420, 106. (e) Jacquemin, D.; Perpète, E. A.; Scalmani, G.; Frisch, M. J.; Kobayashi, R.; Adamo, C. J. Chem. Phys. 2007, 126, 144105.

  27. (a) Becke, A. D. Phys. Rev. 1988, 38(6), 3098. (b) Becke, S. D. J. Chem. Phys. 1993, 98(7), 5648. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37(2), 785. (d) Yanai, T.; Tew, D.; Handy, N. Chem. Phys. Lett. 2004, 393(1–3), 51.

  28. (a) Joantéguy, S.; Pfister-Guillouzo, G.; Chermette, H. J. Phys. Chem. 1999, 103(18), 3505. (b) Chrostowska, A.; Miqueu, K.; Pfister-Guillouzo, G.; Briard, E.; Levillain, J.; Ripoll, J.-L. J. Mol. Spectrosc. 2001, 205(2), 323. (c) Bartnik, R.; Baylère, P.; Chrostowska, A.; Galindo, A.; Lesniak, S.; Pfister-Guillouzo, G. Eur. J. Org. Chem. 2003, (13), 2475.

  29. (a) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109(19), 8218. (b) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108(11), 4439. (c) Lemierre, V.; Chrostowska, A.; Dargelos, A.; Chermette, H. J. Phys. Chem. A 2005, 109(37), 8348.

  30. Varetto, U. Molekel 4.3; Swiss National Supercomputing Centre: Manno (Switzerland).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Weber.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2017, 53(1), 54–65

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, L., Eickhoff, D., Chrostowska, A. et al. Synthesis, structure, and properties of luminescent diazaborole and indole systems. Chem Heterocycl Comp 53, 54–65 (2017). https://doi.org/10.1007/s10593-017-2021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-017-2021-0

Keywords

Navigation