Skip to main content
Log in

Heterocyclic structures applied as efficient molecular probes for the investigation of chemically important interactions in the liquid phase

  • REVIEWS
  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

A Correction to this article was published on 01 May 2021

This article has been updated

Heterocyclic molecular probes were applied for the investigation chemically significant effects of the liquid phase to solute materials. A brief historic overview of the estimation of solvent effects is reported as well as most recent developments. The familiar three-dimensional concepts of solvent–solute interactions were upgraded to two-dimensional effects similar to surfaces where heterocyclic structures with compensating dipoles give basic insights in processes on the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Change history

References

  1. (a) Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry; Wiley-VCH: Weinheim, 2011, 4th ed. (b) Katritzky, A. R.; Fara, D. C.; Yang, H.; Tämm, K.; Tamm, T.; Karelson, M. Chem. Rev. 2004, 104, 175. (c) Catalán, J. In Handbook of Solvents; Wypych, G., Ed.; ChemTec Publishing: Toronto, 2001, p. 583.

  2. Stiopkin, I. V.; Weeraman, C.; Pieniazek, P. A.; Shalhout, F. Y.; Skinner, J. L.; Benderskii, A. Nature 2011, 474, 192.

    Article  CAS  Google Scholar 

  3. Debye, P.; Hückel, E. Phys. Z. 1923, 24, 185.

    CAS  Google Scholar 

  4. Onsager, L. J. Am. Chem. Soc. 1936, 58, 1486.

    Article  CAS  Google Scholar 

  5. Eigen, M.; Wicke, E. Naturwissenschaften 1951, 38, 453.

    Article  CAS  Google Scholar 

  6. (a) Eigen, M.; Wicke, E. Z. Elektrochem. 1953, 57, 319. (b) Dukhin, A.; Parlia, S. Curr. Opin. Colloid Interface Sci. 2013, 18, 93.

  7. Eigen, M.; Wicke, E. J. Phys. Chem. 1954, 58, 702.

    Article  CAS  Google Scholar 

  8. Feynman, R. P.; Leighton, R. B.; Sands, M. The Feynman Lectures on Physics: Definitive Edition; Addison-Wesley: New York, 2005, Vol. 2, Chapter 11-5.

  9. Kirkwood, J. G. J. Chem. Phys. 1939, 7, 911.

    Article  CAS  Google Scholar 

  10. Langhals, H. J. Electr. Electron. Syst. 2014, 3, 1000125.

    Google Scholar 

  11. Liptay, W.; Becker, J.; Wehning, D.; Lang, W.; Burkhard, O. Z. Z. Naturforsch., A: Phys., Phys. Chem., Kosmophys. 1982, 37A, 1396.

    CAS  Google Scholar 

  12. (a) Nee, T.-W.; Zwanzig, R. J. Chem. Phys. 1970, 52, 6353. (b) Heckmann, A.; Lambert, C.; Goebel, M.; Wortmann, R. Angew. Chem. 2004, 116, 5976; Angew. Chem., Int. Ed. 2004, 43, 5851. (c) Amthor, S.; Lambert, C.; Dümmler, S.; Fischer, I.; Schelter, J. J. Phys. Chem. A 2006, 110, 5204. (d) del Castillo, L. F.; Dávalos-Orozco, L. A.; García-Colín, L. S. J. Chem. Phys. 1997, 106, 2348. (e) Domínguez, M.; Caroli Rezende, M. J. Phys. Org. Chem. 2010, 23, 156.

  13. (a) Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. (b) Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1956, 78, 2770. (c) Winstein. S.; Fainberg, A. H. J. Am. Chem. Soc. 1957, 79, 5937.

  14. Hammett, L. P. Physical Organic Chemistry; McGraw-Hill: New York, 1970, 2nd ed.

    Google Scholar 

  15. Correlation Analysis in Chemistry – Recent Advances; Chapman, N. B.; Shorter, J., Eds.; Plenum Press: New York, London, 1978.

  16. Kosower, E. M. J. Am. Chem. Soc. 1958, 80, 3253.

    Article  CAS  Google Scholar 

  17. Brooker, L. G. S.; Craig, A. C.; Heseltine, D. W.; Jenkins, P. W.; Lincoln, L. L. J. Am. Chem. Soc. 1965, 87, 2443.

    Article  CAS  Google Scholar 

  18. Brooker, L. G. S.; Keyes, G. H.; Heseltine, D. W. J. Am. Chem. Soc. 1951, 73, 5350.

    Article  CAS  Google Scholar 

  19. Langhals, H. Z. Phys. Chem. (Wiesbaden, Ger.) 1981, 127, 45.

    Article  CAS  Google Scholar 

  20. (a) Dimroth, K.; Reichardt, C.; Siepmann, T.; Bohlmann, F. Justus Liebigs Ann. Chem. 1963, 661, l. (b) Reichardt, C. Angew. Chem. 1965, 77, 30; Angew. Chem., Int. Ed. 1965, 4, 29. (c) Reichardt, C.; Müller, R. Justus Liebigs Ann. Chem. 1976, 1937. (d) Reichardt, C. Pure Appl. Chem. 2008, 80, 1415. (e) Machado, V. G.; Stock, R. I.; Reichardt, C. Chem. Rev. 2014, 114, 10429. (f) Afri, M.; Gottlieb, H. E.; Frimer, A. A. Can. J. Chem. 2014, 92, 128. (g) Etienne, T.; Michaux, C.; Monari, A.; Assfeld, X.; Perpète, E. A. Dyes Pigm. 2014, 100, 24.

  21. Cerón-Carrasco, J. P.; Jacquemin, D.; Laurence, C.; Planchat, A.; Reichardt, C.; Sraidi, K. J. Phys. Org. Chem. 2014, 27, 512.

    Article  Google Scholar 

  22. Reichardt, C.; Che, D.; Heckenkemper, G.; Schäfer, G. Eur. J. Org. Chem. 2001, 12, 2343.

    Article  Google Scholar 

  23. Reichardt, C.; Harbusch-Görnert, E. Liebigs Ann. Chem. 1983, 721.

  24. Langhals, H. DE Patent 3016764.

  25. Kessler, M. A.; Wolfbeis, O. S. Chem. Phys. Lipids 1989, 50, 51.

    Article  CAS  Google Scholar 

  26. Briegleb, G. In 2. Internationales Farbensymposium. Optische Anregung organischer Systeme ''Aufnahme und Umwandlung von Lichtenergie durch Farbstoffe und die Einflüsse des Mediums''; Foerst, W., Ed.; Verlag Chemie GmbH.: Weinheim, 1966, p. 391; Chem. Abstr. 1969, 70, 72135.

  27. Renge, I. J. Phys. Chem. A 2010, 114, 6250.

    Article  CAS  Google Scholar 

  28. Gutmann, V. Coord. Chem. Rev. 1976, 18, 225.

    Article  CAS  Google Scholar 

  29. Kamlet, M. J.; Abboud, J. L.; Taft, R. W. J. Am. Chem. Soc. 1977, 99, 6027.

    Article  CAS  Google Scholar 

  30. Catalán, J. J. Phys. Chem. B 2009, 113, 5951.

    Article  Google Scholar 

  31. Catalán, J.; Hopf, H. Eur. J. Org. Chem. 2004, 4694.

  32. Koppel, A.; Palm, V. A. In Advances in Linear Free Energy Relationships; Chapman, N. B.; Shorter, J., Eds.; Plenum Press: London, 1972, p. 203.

  33. Weckwerth, J. D.; Vitha, M. F.; Carr, P. W. Fluid Phase Equilib. 2001, 183–184, 143.

    Article  Google Scholar 

  34. Taft, R. W.; Kamlet, M. J. J. Am. Chem. Soc. 1976, 98, 2886.

    Article  CAS  Google Scholar 

  35. (a) Beard, M. C.; Turner, G. M.; Schmuttenmaer, C. A. J. Am. Chem. Soc. 2000, 122, 11541. (b) Beard, M. C.; Turner, G. M.; Schmuttenmaer, C. A. J. Phys. Chem. A 2002, 106, 878. (c) Schweig, A.; Reichardt, C. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1966, 21A, 1373. (d) Liptay, W.; Schlosser, H. J.; Dumbacher, B.; Hünig, S. Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 1968, 23A, 1613.

  36. Langhals, H.; Braun, P.; Dietl, C.; Mayer, P. Chem.–Eur. J. 2013, 19, 13511.

    Article  CAS  Google Scholar 

  37. Elektrische Felder V2.3 software. http://www.crazybytes.at/didact/didact_simul_D.htm (access at 26-1-2017).

  38. Dimroth, K.; Reichardt, C. Liebigs Ann. Chem. 1969, 727, 93.

    Article  CAS  Google Scholar 

  39. Kebarle, P. In Ions and Ion Pairs in Organic Reactions; Szwarc, M., Ed.; Wiley-Interscience: New York, 1972, vol. 1, p. 27.

    Google Scholar 

  40. Guchhait, B.; Liu, Y.; Siebert, T.; Elsaesser, T. Struct. Dyn. 2016, 3, 043202. DOI 10.1063/1.4936567.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Langhals.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2017, 53(1), 2–10

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langhals, H. Heterocyclic structures applied as efficient molecular probes for the investigation of chemically important interactions in the liquid phase. Chem Heterocycl Comp 53, 2–10 (2017). https://doi.org/10.1007/s10593-017-2014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-017-2014-z

Keywords

Navigation