Advertisement

Chemistry of Heterocyclic Compounds

, Volume 52, Issue 11, pp 964–969 | Cite as

Catalyst-free green synthesis of novel 2-amino-4-aryl-3-(4-fluorophenyl)-4,6,7,8-tetrahydroquinolin-5(1H)-ones via a one-pot four-component reaction under ultrasonic condition

  • Santhosh Govindaraju
  • Sumaiya Tabassum
  • Riyaz-ur-Rahaman Khan
  • Mohamed Afzal Pasha
Article

The investigation presents a straightforward synthesis of fourteen novel 2-amino-4-aryl-3-(4-fluorophenyl)-4,6,7,8-tetrahydroquinolin-5(1H)-one derivatives via a catalyst-free one-pot four-component cyclocondensation reaction of dimedone, various substituted benzaldehydes, 4-fluorophenylacetonitrile, and ammonium acetate in water under the influence of ultrasound. In comparison with the literature methods, our approach is more effective and offers several advantages, such as safe handling, excellent yields, shorter reaction time, and a simple workup procedure. All the synthesized derivatives were obtained in 87–97% yields and were characterized by IR, 1H, 13C NMR, and ESI mass spectra and elemental analysis.

Keywords

4,6,7,8-tetrahydroquinolin-5(1H)-ones aqueous medium catalyst-free reaction one-pot four-component reaction ultrasonic irradiation 

Notes

The authors gratefully acknowledge the financial assistance by the VGST, Department of Information Technology, Biotechnology and Science & Technology, Government of Karnataka for the CESEM Award Grant No. 24 (2010-2011).

Supplementary material

10593_2017_1994_MOESM1_ESM.pdf (7.7 mb)
ESM 1 (PDF 7840 kb)

References

  1. 1.
    Zhu, J.; Bienaymé, H.: Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.Google Scholar
  2. 2.
    Nair, V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L. Acc. Chem. Res. 2003, 36, 899.CrossRefGoogle Scholar
  3. 3.
    Dömling, A. Chem. Rev. 2006, 106, 17.CrossRefGoogle Scholar
  4. 4.
    Dömling, A.; Ugi, I. Angew. Chem. Int. 2000, 39, 3168.CrossRefGoogle Scholar
  5. 5.
    Kappe, C. O. QSAR Comb. Sci. 2003, 22, 630.CrossRefGoogle Scholar
  6. 6.
    Ahmed, N.; van Lier, J. E. Tetrahedron Lett. 2007, 48, 5407.CrossRefGoogle Scholar
  7. 7.
    Ugi, I.; Werner, B.; Dömling, A. Molecules 2003, 8, 53.CrossRefGoogle Scholar
  8. 8.
    Trost, B. M. Acc. Chem. Res. 2002, 35, 695.CrossRefGoogle Scholar
  9. 9.
    Shaterian, H. R.; Yarahmadi, H. Tetrahedron Lett. 2008, 49, 1297.CrossRefGoogle Scholar
  10. 10.
    Pasha, M. A.; Swamy, N. R.; Jayashankara, V. P. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2005, 44B, 823.Google Scholar
  11. 11.
    Pasha, M. A.; Jayashankara, V. P. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2007, 46B, 1328.Google Scholar
  12. 12.
    Datta, B.; Pasha, M. A. Ultrason. Sonochem. 2011, 18, 624.CrossRefGoogle Scholar
  13. 13.
    Wang, S. X.; Li, Z. Y.; Zhang, J.-C.; Li, J. T. Ultrason. Sonochem. 2008, 15, 677.CrossRefGoogle Scholar
  14. 14.
    Shekouhy, M.; Hasaninejad, A. Ultrason. Sonochem. 2012, 19, 307.CrossRefGoogle Scholar
  15. 15.
    Safari, J.; Banitaba, S. H.; Khalili, S. D. Ultrason. Sonochem. 2012, 19, 1061.CrossRefGoogle Scholar
  16. 16.
    Banitaba, S. H.; Safari, J.; Khalili, S. D. Ultrason. Sonochem. 2013, 20, 401.CrossRefGoogle Scholar
  17. 17.
    Rama, K.; Pasha, M. A. Ultrason. Sonochem. 2005, 12, 437.CrossRefGoogle Scholar
  18. 18.
    Pintilie, L.; Negut, C.; Oniscu, C.; Caproiu, M. T.; Nechifor, M.; Iancu, L.; Ghiciuc, C.; Ursu, R. Rom. Biotech. Lett. 2009, 14, 4756.Google Scholar
  19. 19.
    Kumar, S.; Sharma, P.; Kapoor, K. K.; Hundal, M. S. Tetrahedron 2008, 64, 536.CrossRefGoogle Scholar
  20. 20.
    Lichitsky, B. V.; Dudinov, A. A.; Krayushkin, M. M. ARKIVOC 2001, (ix), 73.Google Scholar
  21. 21.
    Elnagdi, M. H.; Aal, A.; Maksoud, F. A.; Yassin, Y. M. J. Prakt. Chem. 1989, 331, 971.CrossRefGoogle Scholar
  22. 22.
    Tu, S.; Zhang, J.; Zhu, X.; Zhang, Y.; Wang, Q.; Xu, J.; Jiang, B.; Jia, R.; Zhang, J.; Shi, F. J. Heterocycl. Chem. 2006, 43, 985.CrossRefGoogle Scholar
  23. 23.
    Said, S. A.; Moustafa, A. H. J. Chem. Res. 2010, 34, 528.CrossRefGoogle Scholar
  24. 24.
    Amoozadeh, A.; Rahmani, S.; Bitaraf, M.; Abadi, F. B.; Tabrizian, E. New J. Chem. 2016, 40, 770.CrossRefGoogle Scholar
  25. 25.
    Tabrizian, E.; Amoozadeh, A. Catal. Sci. Technol. 2016, 6, 6267.CrossRefGoogle Scholar
  26. 26.
    Abaszadeh, M.; Seifi, M.; Asadipour, A. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2016, 46, 512.Google Scholar
  27. 27.
    Amirheidari, B.; Seifi, M.; Abaszadeh, M. Res. Chem. Intermed. 2016, 42, 3413.CrossRefGoogle Scholar
  28. 28.
    Siddekha, A.; Azzam, S. H. S.; Pasha, M. A. Synth. Commun. 2014, 44, 424.CrossRefGoogle Scholar
  29. 29.
    Safari, J.; Zarnegar, Z. Ultrason. Sonochem. 2013, 20, 740.CrossRefGoogle Scholar
  30. 30.
    Gogate, P. R.; Mujumdar, S.; Pandit, A. B. Adv. Environ. Res. 2003, 7, 283.CrossRefGoogle Scholar
  31. 31.
    Mason, T. J. Ultrason. Sonochem. 2003, 10, 175.CrossRefGoogle Scholar
  32. 32.
    Carnell, M. T.; Gentry, T. P.; Emmony, D. C. Ultrasonics 1998, 36, 689.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Santhosh Govindaraju
    • 1
  • Sumaiya Tabassum
    • 1
  • Riyaz-ur-Rahaman Khan
    • 1
  • Mohamed Afzal Pasha
    • 1
  1. 1.Department of Studies in Chemistry, Central College CampusBangalore UniversityBengaluruIndia

Personalised recommendations