Advertisement

Chemistry of Heterocyclic Compounds

, Volume 52, Issue 10, pp 753–765 | Cite as

Nitrogen-containing acetals and ketals in the synthesis of pyrrolidine derivatives

  • Andrey V. Smolobochkin
  • Almir S. Gazizov
  • Alexander R. Burilov
  • Michael A. Pudovik
REVIEWS

This review offers analysis and generalization of data regarding the synthesis of substituted pyrrolidines by using nitrogen-containing acetals and ketals as starting compounds published from year 2000 to 2016. Particular attention has been focused on the synthesis of pyrrolidines that are substituted at position 2. Biological activity data for several pyrrolidine derivatives are reported.

Keywords

γ-amidoacetals γ-carbamatoacetals ketals pyrrolidine derivatives γ-ureidoacetals heterocyclization reaction 

References

  1. 1.
    Brennan, M. B. Chem. Eng. News 2000, 78(13), 23.CrossRefGoogle Scholar
  2. 2.
    Zhang, Q.; Tu, G.; Zhao, Y.; Cheng, T. Tetrahedron 2002, 58, 6795.CrossRefGoogle Scholar
  3. 3.
    Kam, T.-S.; Sim, K.-M. Phytochemistry 1998, 47, 145.CrossRefGoogle Scholar
  4. 4.
    Garvey, D. S.; Wasicak, J. T.; Elliott, R. L.; Lebold, S. A.; Hettinger, A.-M.; Carrera, G. M.; Lin, N.-H.; He, Y.; Holladay, M. W.; Anderson, D. J.; Cadman, E. D.; Raskiewicz, J. L.; Sullivan, J. P.; Arneric, S. P. J. Med. Chem. 1994, 37, 4455.CrossRefGoogle Scholar
  5. 5.
    Cosford, N. D. P.; Bleicher, L.; Herbaut, A.; McCallum, J. S.; Vernier, J.-M.; Dawson, H.; Whitten, J. P.; Adams, P.; Chavez-Noriega, L.; Correa, L. D.; Crona, J. H.; Mahaffy, L. S.; Menzaghi, F.; Rao, T. S.; Reid, R.; Sacaan, A. I.; Santori, E.; Stauderman, K. A.; Whelan, K.; Lloyd, G. K.; McDonald, I. A. J. Med. Chem. 1996, 39, 3235.CrossRefGoogle Scholar
  6. 6.
    Manfré, F.; Pulicani, J. P. Tetrahedron: Asymmetry 1994, 5, 235.CrossRefGoogle Scholar
  7. 7.
    Choi, Y. H.; Choi, J. Y.; Yang, H. Y.; Him, Y. H. Tetrahedron: Asymmetry 2002, 13, 801.CrossRefGoogle Scholar
  8. 8.
    Reisman, S. E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198.CrossRefGoogle Scholar
  9. 9.
    Peterson, E. A.; Jacobsen, E. N. Angew. Chem., Int. Ed. Engl. 2009, 48, 6328.CrossRefGoogle Scholar
  10. 10.
    Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 5030.CrossRefGoogle Scholar
  11. 11.
    Abe, H.; Matsunaga, S.; Takekawa, S.; Watanabe, M. US Patent 2006223826.Google Scholar
  12. 12.
    Arnold, M. B.; Bender, D. M.; Bleisch, T. J.; Jones, W. D.; Ornstein, P. L.; Zarrinmayeh, H.; Zimmerman, D. M. US Patent 6617351.Google Scholar
  13. 13.
    Bailey, N.; Bamford, M. J.; Dean, D. K.; Pickering, P. L.; Wilson, D. M.; Witherington, J. US Patent 20070060566.Google Scholar
  14. 14.
    Taniyama, D.; Kano, K.; Okamoto, K.; Fujioka, M.; Mitsuoka, Y. US Patent 2011105457.Google Scholar
  15. 15.
    Atallah, G.; Bartulis, S.; Burger, M.; Merritt, H.; Ng, S.; Ni, Z.-J.; Pecchi, S.; Pfister, K. B.; Smith, A.; Voliva, C.; Wagmann, A.; Zhang, Y. US Patent 8173647.Google Scholar
  16. 16.
    Egner, B.; Giordanetto, F.; Inghardt, T. US Patent 2008306055.Google Scholar
  17. 17.
    Ginn, J. D.; Marshall, D. R.; Sibley, R.; Sorcek, R. J.; Young, E. R. R.; Yunlong, Z. US Patent 20120178752.Google Scholar
  18. 18.
    Mitchinson, A.; Nadin, A. J. Chem. Soc., Perkin Trans. 1 2000, 2862.CrossRefGoogle Scholar
  19. 19.
    Husinec, S.; Savic, V. Tetrahedron: Asymmetry 2005, 16, 2047.CrossRefGoogle Scholar
  20. 20.
    Han, M.-Y.; Jia, J.-Y.; Wang, W. Tetrahedron Lett. 2014, 55, 784.CrossRefGoogle Scholar
  21. 21.
    Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213.CrossRefGoogle Scholar
  22. 22.
    Piehon, M.; Figadère, B. Tetrahedron: Asymmetry 1996, 7, 927.CrossRefGoogle Scholar
  23. 23.
    Matsumoto, J.; Minamida, A.; Kimura, Y.; Minami, S. Chem. Pharm. Bull. 1980, 28, 2531.CrossRefGoogle Scholar
  24. 24.
    Han, M.-Y.; Zhang, Y.; Wang, H.-Z.; An, W.-K.; Ma, B.-C.; Zhang, Y.; Wang, W. Adv. Synth. Catal. 2012, 354, 2635.CrossRefGoogle Scholar
  25. 25.
    Yamauchi, T.; Hagiwara, S.; Higashiyama, K. J. Org. Chem. 2008, 73, 9784.CrossRefGoogle Scholar
  26. 26.
    Yang, D.; Micalizio, G. C. J. Am. Chem. Soc. 2009, 131, 17548.CrossRefGoogle Scholar
  27. 27.
    Anderson, J. T.; Campbell, M.; Wang, J.; Brunden, K. R.; Harrington, J. J.; Stricker-Krongrad, A.; Song, J.; Doucette, C.; Murphy, S.; Bennani, Y. L. Bioorg. Med. Chem. Lett. 2010, 20, 6246.CrossRefGoogle Scholar
  28. 28.
    Amat, M.; Elias, V.; Llor, N.; Subrizi, F.; Molins, E.; Bosch, J. Eur. J. Org. Chem. 2010, 4017.Google Scholar
  29. 29.
    Louafi, F.; Moreau, J.; Shahane, S.; Golhen, S.; Roisnel, T.; Sinbandhit, S.; Hurvois, J.-P. J. Org. Chem. 2011, 76, 9720.CrossRefGoogle Scholar
  30. 30.
    King, F. D. Tetrahedron 2007, 63, 2053.CrossRefGoogle Scholar
  31. 31.
    King, F. D.; Aliev, A. E.; Caddick, S.; Tocher, D. A.; Courtier-Murias, D. Org. Biomol. Chem. 2009, 7, 167.CrossRefGoogle Scholar
  32. 32.
    King, F. D.; Aliev, A. E.; Caddick, S.; Copley, R. C. B. Org. Biomol. Chem. 2009, 7, 3561.CrossRefGoogle Scholar
  33. 33.
    King, F. D.; Caddick, S. Org. Biomol. Chem. 2011, 9, 4361.CrossRefGoogle Scholar
  34. 34.
    Mazuel, F.; Bui, C.; Charleux, B.; Cabet-Deliry, E.; Winnik, M. A. Macromolecules 2004, 37, 6141.CrossRefGoogle Scholar
  35. 35.
    Wu, L.; Aliev, A. E.; Caddick, S.; Fitzmaurice, R. J.; Tocher, D. A.; King, F. D. Chem. Commun. 2010, 318.Google Scholar
  36. 36.
    Clive, D. L. J.; Hisaindee, S. J. Org. Chem. 2000, 65, 4923.CrossRefGoogle Scholar
  37. 37.
    Sosa, A. C. B.; Yakushijin, K.; Horne, D. A. Tetrahedron Lett. 2000, 41, 4295.CrossRefGoogle Scholar
  38. 38.
    Sai, K. K. S.; O'Connor, M. J.; Klumpp, D. A. Tetrahedron Lett. 2011, 52, 2195.CrossRefGoogle Scholar
  39. 39.
    Seide, W.; Watson, S. E. Synth. Commun. 2005, 35, 995.CrossRefGoogle Scholar
  40. 40.
    Brinner, K. M.; Ellman, J. A. Org. Biomol. Chem. 2005, 3, 2109.CrossRefGoogle Scholar
  41. 41.
    Hahn, K. N.; Fadeyi, O. O.; Cho, H. P.; Lindsley, C. W. Tetrahedron Lett. 2012, 53, 3577.CrossRefGoogle Scholar
  42. 42.
    Higashi, T.; Isobe, Y.; Ouchi, H.; Suzuki, H.; Okazaki, Y.; Asakawa, T.; Furuta, T.; Wakimoto, T.; Kan, T. Org. Lett. 2011, 13, 1089.CrossRefGoogle Scholar
  43. 43.
    Butora, G.; Morriello, G. J.; Kothandaraman, S.; Guiadeen, D.; Pasternak, A.; Parsons, W. H.; MacCoss, M.; Vicario, P. P.; Cascieri, M. A.; Yang, L. Bioorg. Med. Chem. Lett. 2006, 16, 4715.CrossRefGoogle Scholar
  44. 44.
    Cayley, A. N.; Cox, R. J., Ménard-Moyon, C.; Schmidt, J. P.; Taylor, R. J. K. Tetrahedron Lett. 2007, 48, 6556.CrossRefGoogle Scholar
  45. 45.
    Luna, A.; Gutiérrez, M.-C.; Furstoss, R.; Alphand, V. Tetrahedron: Asymmetry 2005, 16, 2521.CrossRefGoogle Scholar
  46. 46.
    Fink, M. J.; Fischer, T. C.; Rudroff, F.; Dudek, H.; Fraaije, M. W.; Mihovilovic, M. D. J. Mol. Catal. B: Enzym. 2011, 73, 9.CrossRefGoogle Scholar
  47. 47.
    Maarseveen, J. H.; Meester, W. J. N.; Veerman, J. J. N.; Kruse, C. G.; Hermkens, P. H. H.; Rutjes, F. P. J. T.; Hiemstra, H. J. Chem. Soc., Perkin Trans. 1 2001, 994.CrossRefGoogle Scholar
  48. 48.
    Stragies, R.; Blechert, S. J. Am. Chem. Soc. 2000, 122, 9584.CrossRefGoogle Scholar
  49. 49.
    Córdova, A.; Lin, S.; Tseggai, A. Adv. Synth. Catal. 2012, 354, 1363.CrossRefGoogle Scholar
  50. 50.
    Ito, T.; Overman, L. E.; Wang, J. J. Am. Chem. Soc. 2010, 132, 3272.CrossRefGoogle Scholar
  51. 51.
    Reimann, E.; Ettmayr, C.; Polborn, K. Monatsh. Chem. 2004, 135, 557.CrossRefGoogle Scholar
  52. 52.
    Juma, B.; Adeel, M.; Villinger, A.; Langer, P. Tetrahedron Lett. 2008, 49, 2272.CrossRefGoogle Scholar
  53. 53.
    Juma, B.; Adeel, M.; Villinger, A.; Reinke, H.; Spannenberg, A.; Fischer, C.; Langer, P. Adv. Synth. Catal. 2009, 351, 1073.CrossRefGoogle Scholar
  54. 54.
    Kano, T.; Kumano, T.; Sakamoto, R.; Maruoka, K. Org. Biomol. Chem. 2013, 11, 271.CrossRefGoogle Scholar
  55. 55.
    Ewing, D. F.; Len, C.; Mackenzie, G.; Petit, J. P.; Ronco, G.; Villa, P. J. Pharm. Pharmacol. 2001, 53, 945.CrossRefGoogle Scholar
  56. 56.
    Renton, P.; Speed, J.; Maddaford, S.; Annedi, S. C.; Ramnauth, J.; Rakhit, S.; Andrews, J. Bioorg. Med. Chem. Lett. 2011, 21, 5301.CrossRefGoogle Scholar
  57. 57.
    Passarella, D.; Belinghieri, F.; Scarpellini, M.; Pratesi, G.; Zunino, F.; Gia, O. M.; Dalla Via, L.; Santoro, G.; Danieli, B. Bioorg. Med. Chem. 2008, 16, 2431.CrossRefGoogle Scholar
  58. 58.
    Guilloteau-Bertin, B.; Compère, D.; Gil, L.; Marazano, C.; Das, B. C. Eur. J. Org. Chem. 2000, 1391.Google Scholar
  59. 59.
    Roa, L. F.; Gnecco, D.; Galindo, A.; Terán, J. L. Tetrahedron: Asymmetry 2004, 15, 3393.CrossRefGoogle Scholar
  60. 60.
    Jäkel, M.; Qu, J.; Schnitzer, T.; Helmchen, G. Chem.–Eur. J. 2013, 19, 16746.CrossRefGoogle Scholar
  61. 61.
    Amat, M.; Llor, N.; Hidalgo, J.; Escolano, C.; Bosch, J. J. Org. Chem. 2003, 68, 1919.CrossRefGoogle Scholar
  62. 62.
    Davis, F. A.; Zhang, H.; Lee, S. H. Org. Lett. 2001, 3, 759.CrossRefGoogle Scholar
  63. 63.
    Davis, F. A.; Lee, S. H.; Xu, H. J. Org. Chem. 2004, 69, 3774.CrossRefGoogle Scholar
  64. 64.
    Kuehne, M. E.; He, L.; Jokiel, P. A.; Pace, C. J.; Fleck, M. W.; Maisonneuve, I. M.; Glick, S. D.; Bidlack, J. M. J. Med. Chem. 2003, 46, 2716.CrossRefGoogle Scholar
  65. 65.
    Snider, B. B.; Neubert, B. J. Org. Lett. 2005, 7, 2715.CrossRefGoogle Scholar
  66. 66.
    Shaghafi, M. B.; Barrett, D. G.; Willard, F. S.; Overman, L. E. Bioorg. Med. Chem. Lett. 2014, 24, 1031.CrossRefGoogle Scholar
  67. 67.
    Cohen, F.; Overman, L. E. J. Am. Chem. Sos. 2006, 128, 2594.CrossRefGoogle Scholar
  68. 68.
    Cohen, F.; Overman, L. E. J. Am. Chem. Soc. 2001, 123, 10782.CrossRefGoogle Scholar
  69. 69.
    Overman, L. E.; Wolfe, J. P. J. Org. Chem. 2001, 66, 3167.CrossRefGoogle Scholar
  70. 70.
    Gazizov, A. S.; Smolobochkin, A. V.; Burilov, A. R.; Pudovik, M. A. Chem. Heterocycl. Compd. 2014, 50, 707. [Khim. Geterotsikl. Soedin. 2014, 769.]Google Scholar
  71. 71.
    Gazizov, A. S.; Smolobochkin, A. V.; Burilov, A. R.; Pudovik, M. A. Russ. J. Gen. Chem. 2014, 84, 1934. [Zh. Obshch. Khim. 2014, 1656.]Google Scholar
  72. 72.
    Gazizov, A. S.; Smolobochkin, A. V.; Burilov, A. R.; Pudovik, M. A. Russ. J. Org. Chem. 2014, 50, 1809. [Zh. Org. Khim. 2014, 50, 1828.]Google Scholar
  73. 73.
    Gazizov, A. S.; Smolobochkin, A. V.; Voronina, Y. K.; Burilov, A. R.; Pudovik, M. A. ARKIVOC 2014, (iv), 319.Google Scholar
  74. 74.
    Gazizov, A. S.; Smolobochkin, A. V.; Voronina, Y. K.; Burilov, A. R.; Pudovik, M. A. Synth. Commun. 2015, 45, 1215.CrossRefGoogle Scholar
  75. 75.
    Smolobochkin, A. V.; Gazizov, A. S.; Vagapova, L. I.; Burilov, A. R.; Pudovik, M. A. Russ. Chem. Bull., Int. Ed. 2014, 63, 284. [Izv. Akad. Nauk, Ser. Khim. 2014, 284.]Google Scholar
  76. 76.
    Smolobochkin, A. V.; Gazizov, A. S.; Burilov, A. R.; Pudovik, M. A. Russ. J. Gen. Chem. 2015, 85, 517. [Zh. Obshch. Khim. 2015, 348.]Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Andrey V. Smolobochkin
    • 1
  • Almir S. Gazizov
    • 1
  • Alexander R. Burilov
    • 1
  • Michael A. Pudovik
    • 1
  1. 1.A. E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific CenterRussian Academy of SciencesKazanRussia

Personalised recommendations