Skip to main content
Log in

Theoretical modeling of electrocyclic 2H-pyran and 2H-1,4-oxazine ring opening reactions in photo- and thermochromic spiropyrans and spirooxazines

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The detailed mechanism of thermal ring opening reactions of 2H-pyran and 2H-1,4-oxazine systems in a broad range of spiropyran and spiro-1,4-oxazine derivatives was studied by density functional methods (PBE0/6-311+G(d,p)). The study revealed mechanistic features and the dependence of activation parameters of this electrocyclic reaction on the steric and electronic properties of spiroconjugated fragments of the studied compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Berkovic, G.; Krongauz, V.; Weiss, V. Chem. Rev. 2000, 100, 1741.

    Article  CAS  Google Scholar 

  2. Minkin, V. I. Chem. Rev. 2004, 104, 2751.

    Article  CAS  Google Scholar 

  3. Browne, W. R.; Feringa, B. L. Annu. Rev. Phys.Chem. 2009, 60, 407.

  4. Molecular Switches; Feringa, B. L., Ed.; Wiley-VCH: Weinheim, 2001.

  5. Natali, M.; Giordani, S. Chem. Soc. Rev. 2012, 41, 4010.

    Article  CAS  Google Scholar 

  6. Zhu, J. F.; Chan, W. H.; Lee, A. W. M. Tetrahedron Lett. 2012, 53, 2001.

    Article  CAS  Google Scholar 

  7. Sumiya, S.; Doi, T.; Shiraishi, Y.; Hirai, T. Tetrahedron 2012, 68, 690.

    Article  CAS  Google Scholar 

  8. Shiraishi, Y.; Yamamoto, K.; Sumiya, S.; Hirai, T. Phys. Chem. Chem. Phys. 2014, 16, 12137.

    Article  CAS  Google Scholar 

  9. Minkin, V. I. In Molecular Switches; Feringa, B. L; Browne, W. R., Eds.; Wiley-VCH: Weinheim, 2011, p. 37.

  10. Minkin, V. I. Russ. Chem. Rev. 2013, 82, 1. [Usp. Khim. 2013, 82, 1.]

  11. Darwish, N.; Aragonès, A. C.; Darwish, T.; Ciampi, S.; Díez-Pérez, I. Nano Lett. 2014, 14, 7064.

    Article  CAS  Google Scholar 

  12. Chen, L.; Wu, J.; Schmuck, C.; Tian, H. Chem. Commun. 2014, 6443.

  13. Zhu, M. Q.; Zhang, G. F.; Hu, Z.; Aldred, M. P.; Li, C.; Gong, W. L.; Chen, T.; Huang, Z. L.; Liu, S. Macromolecules 2014, 47, 1543.

    Article  CAS  Google Scholar 

  14. Zhang, H.; Wang, C.; Jiang, T.; Guo, H.; Wang, G.; Cai, X.; Yang, L.; Zhang, Y.; Yu, H.; Wang, H.; Jiang, K. Anal. Chem. 2015, 87, 5216.

    Article  CAS  Google Scholar 

  15. Lenoble, C.; Becker, R. S. J. Phys. Chem. 1986, 90, 62.

    Article  CAS  Google Scholar 

  16. Ernsting, N. P.; Dick, B.; Arthen-Engeland, Th. J. Phys. Chem. 1991, 95, 5502.

    Article  CAS  Google Scholar 

  17. Kullmann, M.; Ruetzel, S.; Buback, J.; Nuernberger, P.; Brixner, T. J. Am. Chem. Soc. 2011, 133, 13074.

    Article  CAS  Google Scholar 

  18. Rini, M.; Holm, A.-K.; Nibbering, E. T. J.; Fidder, H. J. Am. Chem. Soc. 2003, 125, 3028.

    Article  CAS  Google Scholar 

  19. Hobley, J.; Pfeifer-Fukumura, U.; Bletz, M.; Asahi, T.; Masuhara, H.; Fukumura, H. J. Phys. Chem. A 2002, 106, 2265.

    Article  CAS  Google Scholar 

  20. Futami, Y.; Chin, M. L. S.; Kudoh, S.; Takayanagi, M.; Nakata, M. Chem. Phys. Lett. 2003, 370, 460.

    Article  CAS  Google Scholar 

  21. Gómez, I.; Reguero, M.; Robb, M. A. Phys. Chem. A 2006, 110, 3986.

    Article  Google Scholar 

  22. Celani, P.; Bernardi, F.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc. 1997, 119, 10815.

    Article  CAS  Google Scholar 

  23. Sheng, Y.; Leszczynski, J.; Garcia, A. A.; Rosario, R.; Gust, D.; Springer, J. J. Phys. Chem. B 2004, 108, 16233.

    Article  CAS  Google Scholar 

  24. Prager,S.; Burghardt, I.; Dreuw, A. J. Phys. Chem. A 2014 , 118(8), 1339.

  25. Sanchez-Lozano, M.; Estévez, C. M.; Hermida-Ramón, J. J. Phys. Chem. A 2011, 115, 9128.

    Article  CAS  Google Scholar 

  26. Minkin, V. I.; Metelitsa, A. V.; Dorogan, I. V.; Lukyanov, B. S.; Besugliy, S. O.; Micheau, J.-C. J. Phys. Chem. A 2005, 109, 9605.

    Article  CAS  Google Scholar 

  27. Liu, F.; Kurashige, Y.; Yanai, T.; Morokuma, K. J. Chem. Theory Comput. 2013, 9, 4462.

    Article  CAS  Google Scholar 

  28. Liu, F.; Morokuma, K. J. Am. Chem. Soc. 2013, 135, 10693.

    Article  CAS  Google Scholar 

  29. Maurel, F.; Aubard, J.; Rajzmann, M.; Guglielmetti, R.; Samat, A. J. Chem. Soc., Perkin Trans. 2 2002, 1307.

  30. Maurel, F.; Aubard, J.; Millie, P.; Dognon, J. P.; Rajzmann, M.; Guglielmetti, R. ; Samat, A. J. Phys. Chem. A 2006, 110, 4759.

    Article  CAS  Google Scholar 

  31. Castro, P. J.; Gómez I.; Cossi, M.; Reguero, M. J. Phys. Chem. A 2012, 116, 8148.

    Article  CAS  Google Scholar 

  32. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, 2009.

  33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.

    Article  CAS  Google Scholar 

Download references

This work was supported by a grant from the Southern Federal University (project 213.01-2014/005) and grant NSh-8201.2016.3 of the President of Russian Federation for Leading Scientific School Support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Dorogan.

Additional information

Supplementary information file containing full and relative energy values for the stationary points on the potential energy surface of investigated transformations, as well as the imaginary vibrational frequencies of transition state structures, is available at http://link.springer.com/journal/10593.

The Cartesian coordinates of all optimized structures can be provided at request.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2016, 52(9), 730–735

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorogan, I.V., Minkin, V.I. Theoretical modeling of electrocyclic 2H-pyran and 2H-1,4-oxazine ring opening reactions in photo- and thermochromic spiropyrans and spirooxazines. Chem Heterocycl Comp 52, 730–735 (2016). https://doi.org/10.1007/s10593-016-1956-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-016-1956-x

Keywords

Navigation