Advertisement

Chemistry of Heterocyclic Compounds

, Volume 52, Issue 8, pp 538–540 | Cite as

Ionic liquids, metal oxide nanoparticles, and enzymes in synthesis of 1,4-dihydropyridines (microreview)

  • Klavs Pajuste
  • Aiva PlotnieceEmail author
HETEROCYCLES IN FOCUS
This microreview is devoted to the specific recent synthetic approaches toward 1,4-dihydropyridines which represent significant group of N-containing heterocycles due to the wide applications of their pharmacological activities. Mainly 1,4-dihydropyridines are synthesized in Hantzsch reaction and its modifications. Nowadays a number of strategies and various catalysts or catalytic systems have been developed to improve the yields of 1,4-dihydropyridines and to reduce chemical impact on environment. Here the contemporary synthetic aspects from last five years such as use of ionic liquids, metal oxide nanoparticles and some reports about enzymatic approaches are discussed.

Keywords

Ionic Liquid Triflate Diethylene Glycol Pyrazolyl Metal Oxide Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Edraki, N.; Mehdipour, A. R.; Khoshneviszadeh, M.; Miri, R. Drug Discovery Today 2009, 14, 1058.CrossRefGoogle Scholar
  2. 2.
    Evans, B. E.; Rittle, K. E.; Bock, M. G.; Dipardo, R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Verber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. H.; Chen, T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J. J. Med. Chem. 1998, 31, 2235.CrossRefGoogle Scholar
  3. 3.
    Muller, G. Drug Discovery Today 2003, 8, 681.CrossRefGoogle Scholar
  4. 4.
    Hantzsch, A. Chem. Ber. 1881, 14, 1637.CrossRefGoogle Scholar
  5. 5.
    Wan, J.-P.; Liu, Y. RSC Adv. 2012, 2, 9763.CrossRefGoogle Scholar
  6. 6.
    Carosati, E.; Ioan, P.; Micucci, M.; Broccatelli, F.; Cruciani, G.; Zhorov, B. S.; Chiarini, A.; Budriesi, R. Curr. Med. Chem. 2012, 19, 4306.CrossRefGoogle Scholar
  7. 7.
    Broccatelli, F.; Zhorov, B. S.; Chiarini, A.; Budriesi, R. Curr. Med. Chem. 2011, 18, 4901.CrossRefGoogle Scholar
  8. 8.
    Khedkar, S. A.; Auti P. B. Mini-Rev. Med. Chem. 2014, 14, 282.CrossRefGoogle Scholar
  9. 9.
    Hyvönen, Z.; Plotniece, A.; Reine, I.; Chekavichus, B.; Duburs, G.; Urtti, A. Biochim. Biophys. Acta 2000, 1509, 451.CrossRefGoogle Scholar
  10. 10.
    Pajuste, K.; Hyvönen, Z.; Petrichenko, O.; Kaldre, D.; Rucins, M.; Cekavicus, B.; Ose, V.; Skrivele, B.; Gosteva, M.; Morin-Picardat, E.; Plotniece, M.; Sobolev, A.; Duburs, G.; Ruponen, M.; Plotniece A. New J. Chem. 2013, 37, 3062.CrossRefGoogle Scholar
  11. 11.
    Radadiya, A.; Khedkar, V.; Bavishi, A.; Vala, H.; Thakrar, S.; Bhavsar, D.; Shah, A.; Coutinho, E. Eur. J. Med Chem. 2014, 74, 375.CrossRefGoogle Scholar
  12. 12.
    Cindric, M.; Cipak, A.; Serly, J.; Plotniece, A.; Jaganjac, M.; Mrakovcic, L.; Lovakovic, T.; Dedic, A.; Soldo, I.; Duburs, G.; Zarkovic, N.; Molnar, J. Anticancer Res. 2010, 30, 4063.Google Scholar
  13. 13.
    Jansone, B.; Kadish, I.; van Groen, T.; Beitnere, U.; Moore, D. R.; Plotniece, A.; Pajuste, K.; Klusa, V. PLoS ONE 2015, 10, e0127686.CrossRefGoogle Scholar
  14. 14.
    Klusa, V. Pharmacol. Res. DOI:  10.1016/j.phrs.2016.05.017
  15. 15.
    Zicmanis, A.; Hinica, A.; Pavlovica S.; Klavins, M.; Latv. Kim. Z. 2009, 3, 235.Google Scholar
  16. 16.
    Priede, E.; Zicmanis, A. Helv. Chim. Acta 2015, 98, 1095.CrossRefGoogle Scholar
  17. 17.
    Sharma, P.; Gupta, M. Green Chem. 2015, 17, 1100.CrossRefGoogle Scholar
  18. 18.
    He, J.-Y.; Jia, H.-Z.; Yao, Q.-G.; Liu S.-J.; Yue H.-K.; Yu H.-W.; Hu R.-S. Ultrason. Sonochem. 2015, 22, 144.CrossRefGoogle Scholar
  19. 19.
    Rad-Moghadam, K.; Youseftabar-Miri, L. J. Fluor. Chem. 2012, 135, 213.CrossRefGoogle Scholar
  20. 20.
    Pajuste, K.; Plotniece, A.; Kore, K.; Intenberga, L.; Cekavicus, B.; Kaldre, D.; Duburs, G.; Sobolev, A. Cent. Eur. J. Chem. 2011, 9, 143.Google Scholar
  21. 21.
    Kumar, R.; Andhare, N. H.; Shard, A.; Richaa, Sinha, A. K. RSC Adv. 2014, 4, 19111.Google Scholar
  22. 22.
    Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. Nat. Mater. 2008, 7, 527.CrossRefGoogle Scholar
  23. 23.
    Nasr-Esfahani, M.; Hoseini, S. J.; Montazerozohori, M.; Mehrabi, R.; Nasrabadi, H. J. Mol. Catal. A: Chem. 2014, 382, 99.CrossRefGoogle Scholar
  24. 24.
    Amirheidari, B.; Seifi, M.; Abaszadeh, M. Res. Chem. Intermed. 2016, 42, 3413.CrossRefGoogle Scholar
  25. 25.
    Dam, B.; Nandi, S.; Pal, A. K. Tetrahedron Lett. 2014, 55, 5236.CrossRefGoogle Scholar
  26. 26.
    Murugan, R.; Ramamoorthy, K.; Sundarrajan, S.; Ramakrishna, S. Tetrahedron 2012, 68, 7196.CrossRefGoogle Scholar
  27. 27.
    Zarnegar, Z.; Safari, J.; Kafroudi, Z. M. New J. Chem. 2015, 39, 1445.Google Scholar
  28. 28.
    Wang, J.-L.; Liu, B.-K.; Yin, C.; Wu, Q.; Lin, X.-F. Tetrahedron 2011, 67, 2689.CrossRefGoogle Scholar
  29. 29.
    Tamaddon F.; Ghazi, S. Catal. Commun. 2015, 72, 63.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Latvian Institute of Organic SynthesisRigaLatvia

Personalised recommendations