Chemistry of Heterocyclic Compounds

, Volume 52, Issue 8, pp 527–529 | Cite as

Synthesis of enantiomerically enriched 4-aryl-3,4-dihydrocoumarins (microreview)

  • Zigmārs LeitisEmail author
Several synthetic approaches are known for the preparation of chiral 4-aryl-3,4-dihydrocoumarins (DHCs). This article considers recently discovered methods for the synthesis of chiral DHCs: enantio-selective Rh(I)-catalyzed 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl compounds, asymmetric reduction of coumarins, oxidation of chiral indanones, hydroesterification of alkenylphenols, and the addition of 1,3-dicarbonyl compounds to o-quinone methides.


Coumarin Rhodium Cinnamates Asymmetric Synthesis Carvone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wungsintaweekul, B.; Umehara, K.; Miyase, T.; Noguchi, H. Phytochemistry 2011, 72, 495.CrossRefGoogle Scholar
  2. 2.
    Zhang, X.-F.; Wang, H.-M.; Song, Y.-L.; Nie, L.-H.; Wang, L.-F.; Lui, B.; Shen, P.-P.; Lui, Y. Bioorg. Med. Chem. Lett. 2006, 16, 949.CrossRefGoogle Scholar
  3. 3.
    Wu, P.-L.; Hsu, Y.-L.; Zao, C.-W.; Damu, A. G.; Wu, T.-S. J. Nat. Prod. 2005, 68, 1180.CrossRefGoogle Scholar
  4. 4.
    Seo, E.-K.; Wani, M. C.; Wall, M. E.; Navarro, H.; Mukherjee, R.; Farnsworth, N. R.; Kinghorn, A. D. Phytochemistry 2000, 55, 35.CrossRefGoogle Scholar
  5. 5.
    Murata, T.; Miyase, T.; Yoshizaki, F. Chem. Pharm. Bull. 2011, 59, 88.CrossRefGoogle Scholar
  6. 6.
    Khan, P. M.; El-Gendy, B. E.-D. M.; Kumar, N.; Garcia-Ordonez, R.; Lin, L.; Ruiz, C. H.; Cameron, M. D.; Griffin, P. R.; Kamenecka, T. M. Bioorg. Med. Chem. Lett. 2013, 23, 532.CrossRefGoogle Scholar
  7. 7.
    (a) Gillberg, P.-G.; Sundquist, S.; Nilvebrant, L. Eur. J. Pharmacol. 1998, 349, 285. (b) Breitenbach, A.; Meese, C.; Wolff, H.-M.; Drews, R. WO Patent 2004089872.Google Scholar
  8. 8.
    Li, J.; Chang, W.; Ren, W.; Liu, W.; Wanga, H.; Shi, Y. Org. Biomol. Chem. 2015, 13, 10341.CrossRefGoogle Scholar
  9. 9.
    Wang, H.; Dong, B.; Wang, Y.; Li, J.; Shi, Y. Org. Lett. 2014, 16, 186.CrossRefGoogle Scholar
  10. 10.
    Gallagher, B. D.; Taft, B. R.; Lipshutz, B. H. Org. Lett. 2009, 11, 5374.CrossRefGoogle Scholar
  11. 11.
    Barancelli, D. A.; Salles, A. G.; Taylor, J. G.; Correia, C. R. D. Org. Lett. 2012, 14, 6036.CrossRefGoogle Scholar
  12. 12.
    Defieber, C.; Paquin, J.-F.; Serna, S.; Carreira, E. M. Org. Lett. 2004, 6, 3873.CrossRefGoogle Scholar
  13. 13.
    Luo Y.; Carnell, A. J. Angew. Chem., Int. Ed. 2010, 49, 2750.Google Scholar
  14. 14.
    Colombo, L.; Rossi, R.; Allegrini, P.; Castaldi, G. EP Patent 1584621.Google Scholar
  15. 15.
    Chen, G.; Tokunaga, N.; Hayashi, T. Org. Lett. 2005, 7, 2285.CrossRefGoogle Scholar
  16. 16.
    Korenaga, T.; Maenishi, R.; Osaki, K.; Sakai, T. Heterocycles 2010, 80, 157.CrossRefGoogle Scholar
  17. 17.
    Mino, T.; Miura, K.; Taguchi, H.; Watanabe, K.; Sakamoto, M. Tetrahedron: Asymmetry 2015, 26, 1065.CrossRefGoogle Scholar
  18. 18.
    Park, J. O.; Youn, S. W. Org. Lett. 2010, 12, 2258.CrossRefGoogle Scholar
  19. 19.
    Brönnimann, R.; Chun, S.; Marti, R. Helv. Chim. Acta 2012, 95, 1809.CrossRefGoogle Scholar
  20. 20.
    Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem.–Eur. J. 2011, 17, 11405.CrossRefGoogle Scholar
  21. 21.
    Allen, J. C.; Kociok-Köhn, G.; Frost, C. G. Org. Biomol. Chem. 2012, 10, 32.CrossRefGoogle Scholar
  22. 22.
    Yue, G.; Lei, K.; Hirao, H.; Zhou, J. Angew. Chem., Int. Ed. 2015, 54, 6531.CrossRefGoogle Scholar
  23. 23.
    Caruana, L.; Mondatori, M.; Corti, V.; Morales, S.; Mazzanti, A.; Fochi, M.; Bernardi, L. Chem.–Eur. J. 2015, 21, 6037.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Latvian Institute of Organic SynthesisRigaLatvia

Personalised recommendations