Advertisement

Chemistry of Heterocyclic Compounds

, Volume 52, Issue 6, pp 364–373 | Cite as

Synthesis of 3-trimethylsiloxy-1-(furan-3-yl)butadiene and its reactions with dienophiles

  • Maxim E. Mironov
  • Irina Yu. Bagryanskaya
  • Elvira E. Shults
Article
  • 146 Downloads

3-Trimethylsilyloxy-1-(furan-3-yl)butadiene was synthesized and studied in reactions with 2,2-dimethyl-5-methylidene-1,3-dioxane-4,6-diones, 5-methylenepyrimidine-2,4,6-triones, as well as with imines. Reactions with dienophiles containing an exo-methylene double bond in the presence of L-proline occurred regio- and stereoselectively with the formation of 7-(furan-3-yl)spiro[5,5]undecane-1,5,9-triones or 7-(furan-3-yl)-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraones. The reaction of diene with methylene imine, obtained from L-phenylalanine methyl ester and formaldehyde, in the presence of Lewis acids led to the formation of 2-(furan-3-yl)piperidin-4-one or the product of ene reaction, methyl (2S)-2-{[(4E)-5-(furan-3-yl)-3-oxopent-4-en-1-yl]amino}-3-phenylpropanoate. The structures of three compounds were confirmed by X-ray structural analysis.

Keywords

dimethylbarbituric acid furan-3-aldehyde Meldrum's acid siloxybutadienes Diels–Alder reaction X-ray structural analysis 

References

  1. 1.
    (a) Jenett-Siems, K.; Siems, K.; Witte, L.; Eich, E. J. Nat. Prod. 2001, 64, 1471. (b) Lin, Y.-L.; Tsai, Y.-L.; Kuo, Y.-H.; Liu Y.-H.; Shiao, M.-S. J. Nat. Prod. 1999, 62, 1500. (c) Quintana, J.; Brango-Vanegas, J.; Costa, G. M.; Castellanos, L.; Arévalo, C.; Duque, C. Rev. Bras. Farmacogn. 2015, 25, 199.Google Scholar
  2. 2.
    (a) Hentschel, E.; Brandstätter, G.; Dragosics, B.; Hirschl, A. M.; Nemec, H.; Scütze, K.; Taufer, M.; Wurzer, H. N. Engl. J. Med. 1993, 328, 308. (b) Franchetti, P.; Marchetti, S.; Cappellacci, L.; Jayaram, H. N.; Yalowitz, J. A.; Goldstein, B. M.; Barascut, J.-L.; Dukhan, D.; Imbach, J.-L.; Grifantini, M. J. Med. Chem., 2000, 43, 1264.Google Scholar
  3. 3.
    (a) Gidron, O.; Shimon, L. J. W.; Leitus, G.; Bendikov, M. Org. Lett. 2012, 14, 502. (b) Bunz, U. H. F. Angew. Chem., Int. Ed. 2010, 49, 5037.Google Scholar
  4. 4.
    (a) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084. (b) Li, Y.; Brand, J. P.; Waser J. Angew. Chem., Int. Ed. 2013, 52, 6743. (c) Palisse, A.; Kirsch, S. F. Eur. J. Org. Chem. 2014, 7095. (d) Chen, L.; Du, Y.; Zeng, X.-P.; Shi, T.-D.; Zhou, F.; Zhou, J. Org. Lett. 2015, 17, 1557. (e) Padmavathi, R.; Sankar, R.; Gopalakrishnan, B.; Parella, R.; Babu, S. A. Eur. J. Org. Chem. 2015, 3727. (f) Nallagonda, R.; Reddy, R. R.; Ghorai, P. Chem.–Eur. J. 2015, 21, 14732;Google Scholar
  5. 5.
    (a) Tolstikov, G. A.; Shul'ts, E. E.; Safarova, G. M.; Spirikhin, L. V.; Panasenko, A. A. Zh. Org. Khim. 1990, 26, 1283. (b) Shults, E. E.; Petrova, T. N.; Rybalova, T. V.; Gatilov, Y. V.; Tolstikov, G. A. Russ. J. Org. Chem. 1998, 34, 845. [Zh. Org. Khim. 1998, 34, 895.] (c) Shults, E. E.; Bondarenko, S. P.; Shakirov, M. M.; Bagryanskaya, I. Y.; Tolstikov, G. A. Russ. J. Org. Chem. 2010, 46, 1709. [Zh. Org. Khim. 2010, 46, 1701.]Google Scholar
  6. 6.
    Mironov, M. E.; Shul'ts, E. E.; Shakirov, M. M.; Kharitonov, Y. V.; Tolstikov, G. A. Russ. J. Org. Chem. 2012, 48, 840. [Zh. Org. Khim. 2012, 48, 842.]Google Scholar
  7. 7.
    Shults, E. E.; Semenova, E. A.; Johnson, A. A.; Bondarenko, S. P.; Bagryanskaya, I. Y.; Gatilov, Y. V.; Tolstikov G. A.; Pommier Y. Bioorg. Med. Chem. Lett. 2007, 17, 1362.CrossRefGoogle Scholar
  8. 8.
    Le, P. Q.; Nguyen, T. S.; May, J. A. Org. Lett. 2012, 14, 6104.CrossRefGoogle Scholar
  9. 9.
    Lalonde, M. P.; McGowan, M. A.; Rajapaksa, N. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2013, 135, 1891.CrossRefGoogle Scholar
  10. 10.
    Lingham, A. R.; Hügel, H. M.; Rook, T. J. Aust. J. Chem. 2006, 59, 340.CrossRefGoogle Scholar
  11. 11.
    Mieriņa, I., Jure M. Chem. Heterocycl. Compd. 2016, 52, 7. [Khim. Geterotsikl. Soedin. 2016, 52, 7.]Google Scholar
  12. 12.
    Buzinkai, J. F.; Hrubowchak, D. M.; Smith, F. X. Tetrahedron Lett. 1985, 26, 3195.CrossRefGoogle Scholar
  13. 13.
    Rousseau, G. Tetrahedron 1995, 51, 2777.CrossRefGoogle Scholar
  14. 14.
    Allen, F. H.; Kenard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor R. J. Chem. Soc., Perkin Trans. 2 1987, S1.Google Scholar
  15. 15.
    (a) Das, U.; Molnár, J.; Baráth, Z.; Bata, Z.; Dimmock, J. R. Bioorg. Med. Chem. Lett. 2008, 18, 3484. (b) Műller, D.; Alexakis, A. Org. Lett. 2012, 14, 1842.Google Scholar
  16. 16.
    (a) Comins, D. L.; LaMunyon, D. H.; Chen, X. J. Org. Chem. 1997, 62, 8182. (b) Davis, F. A.; Chao, B.; Rao, A. Org. Lett. 2001, 3, 3169. (c) Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2008, 6, 3464.Google Scholar
  17. 17.
    Kerwin, J. F.; Danishefsky, S. Tetrahedron Lett. 1982, 23, 3739.CrossRefGoogle Scholar
  18. 18.
    Sisko, J.; Weinreb, S. M. Tetrahedron Lett. 1989, 30, 3037.CrossRefGoogle Scholar
  19. 19.
    Ali, T.; Chauhan, K. K; Frost, G. Tetrahedron Lett. 1999, 40, 5621.CrossRefGoogle Scholar
  20. 20.
    Kobayashi, S.; Araki, M.; Ishitani, H.; Nagayama, S.; Hachiya, J. Synlett 1995, 233.Google Scholar
  21. 21.
    Grieco, P. A.; Larsen, S. D. J. Org. Chem. 1986, 51, 3553.CrossRefGoogle Scholar
  22. 22.
    (a) Loncaric, C.; Manabe, K.; Kobayashi, S. Chem. Commun. 2003, 574. (b) Heintzelman, G. R.; Meigh, I. R.; Mahajan, Y. R.; Weinreb, S. M. Org. React. (Hoboken, NJ, U. S.) 2005, 65, 141. (c) Park, Y.; Park, E.; Jung, H.; Lee, Y.-J.; Jew, S., Park, H. Tetrahedron 2011, 67, 1166. (d) Girling, P. R.; Kiyoi, T.; Whiting, A. Org. Biomol. Chem. 2011, 9, 3105.Google Scholar
  23. 23.
    Waldman, H.; Braun, M. J. Org. Chem. 1992, 57, 4444.CrossRefGoogle Scholar
  24. 24.
    (a) Waldmann, H.; Braun, M.; Dräger, M. Angew. Chem., Int. Ed. 1990, 29, 1468. (b) Olmos, A.; Louis, B.; Pale, P. Chem.–Eur. J. 2012, 18, 4894.Google Scholar
  25. 25.
    Jørgensen, K. A. Angew. Chem., Int. Ed. 2000, 39, 3558.CrossRefGoogle Scholar
  26. 26.
    (a) Tolstikov, G. A.; Shul'ts, E. E.; Baykova, I. P.; Spirikhin, L. V. Zh. Org. Khim. 1991, 27, 417. (b) Tolstikova, T. G.; Shultz, E. E.; Popov, V. G.; Kashapova, E. K.; Lasareva, D. N.; Tolstikov, G. A. Dokl. Chem. 1994, 335, 388. [Dokl. Akad. Nauk 1994, 335, 388.]Google Scholar
  27. 27.
    Davidson, D.; Bernhard, S. A. J. Am. Chem. Soc. 1948, 70, 3426.CrossRefGoogle Scholar
  28. 28.
    Zitsane, D. R.; Ravinya, I. T.; Riikure, I. A.; Tetere, Z. F.; Gudrinietse, E. Yu.; Kalei, U. O. Russ. J. Org. Chem. 1999, 35, 1457. [Zh. Org. Khim. 1999, 35, 1481.]Google Scholar
  29. 29.
    Singh, P.; Kaur, M.; Verma, P. Bioorg. Med. Chem. Lett. 2009, 19, 3054.CrossRefGoogle Scholar
  30. 30.
    SADABS. Version 2.01; Bruker AXS, Inc.: Madison, 2004.Google Scholar
  31. 31.
    Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3.CrossRefGoogle Scholar
  32. 32.
    Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.CrossRefGoogle Scholar
  33. 33.
    Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J. J. Appl. Crystallogr. 2006, 39, 453.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maxim E. Mironov
    • 1
    • 2
  • Irina Yu. Bagryanskaya
    • 1
    • 2
  • Elvira E. Shults
    • 1
    • 2
  1. 1.N. N. Vorozhtsov Novosibirsk Institute of Organic ChemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia

Personalised recommendations