Advertisement

Chemistry of Heterocyclic Compounds

, Volume 51, Issue 10, pp 891–898 | Cite as

Synthesis of adamantyl-containing phenylpiperidines

  • Vera A. ShadrikovaEmail author
  • Evgeny V. Golovin
  • Vadim A. Shiryaev
  • Marat R. Baimuratov
  • Victor B. Rybakov
  • Yuri N. Klimochkin
Article

The reduction of quaternary 1-(adamantan-1-yl)pyridinium salts with sodium borohydride in ethanol gave 1-(adamantan-1-yl)-1,2,3,6-tetrahydropyridines that reacted with benzene in trifluoromethanesulfonic acid medium, leading to the formation of 1-(adamantan-1-yl)-phenylpiperidines with various spatial orientation of the phenyl substituent. The structure of the obtained phenylpiperidines was confirmed by the spectral dataset. The thermodynamic stability calculations for the conformers of phenylpiperidines were performed with the B3LYP/6-311++(d,p) method.

Keywords

adamantane derivatives phenylpiperidine pyridinium salts 1,2,3,6-tetrahydropyridine conformer DFT hydroarylation reduction 

Notes

This work was supported by a grant from the Russian Scientific Fund (project No. 15-13-0084).

Supplementary material

10593_2015_1792_MOESM1_ESM.pdf (14.6 mb)
ESM 1 (PDF 14913 kb)

References

  1. 1.
    (a) Buffat, M. G. P. Tetrahedron 2004, 60, 1701. (b) Matveeva, N. N.; Winfield, L. L.; Redda, K. K. Curr. Med. Chem. 2005, 12, 551. (c) Fries, D. S.; de Vries, J.; Hazelhoff, B.; Horn, A. S. J. Med. Chem. 1986, 29, 424. (d) Källström, S.; Leino, R. Bioorg. Med. Chem. 2008, 16, 601. (e) Bourin, M.; Chue, P.; Guillon, Y. CNS Drug Rev. 2001, 7, 25. (f) O'Hagan, D. Nat. Prod. Rep. 2000, 5, 435. (g) Pinard, E.; Alberati, D.; Alvarez-Sanchez, R.; Brom, V.; Burner, S.; Fischer, H.; Hauser, N.; Kolczewski, S.; Lengyel, J.; Mory, R.; Saladin, C.; Schulz-Gasch, T.; Stalder, H. ACS Med. Chem. Lett. 2014, 5, 428.Google Scholar
  2. 2.
    (a) Lee, J.-H.; Seo, S. H.; Lim, E. J.; Cho, N.-C.; Nam, G.; Kang, S. B.; Pae, A. N.; Jeong, N.; Keum, G. Eur. J. Med. Chem. 2014, 74, 246. (b) Russell, M. G. N.; Baker, R.; Billington, D. C.; Knight, A. K.; Middlemiss, D. N.; Noble, A. J. J. Med. Chem. 1992, 35, 2025. (c) Rogers, G. A.; Parsons, S. M.; Anderson, D. C.; Nilsson, L. M.; Bahr, B. A.; Kornreich, W. D.; Kaufman, R.; Jacobs, R. S.; Kirtman, B. J. Med. Chem. 1989, 32, 1217. (d) Gu, X.; Izenwasser, S.; Wade, D.; Housman, A.; Gulasey, G.; Rhoden, J. B.; Savoie, C. D.; Mobley, D. L.; Lomenzo, S. A.; Trudell, M. L. Bioorg. Med. Chem. 2010, 18, 8356. (e) Araki, T.; Mikami, T.; Tanji, H.; Matsubara, M.; Imai, Y.; Mizugaki, M.; Itoyama, Y. Eur. J. Pharm. Sci. 2001, 12, 231. (f) Di Monte, D. A.; Jewell, M. A. In Encyclopedia of the Neurological Science; 2nd ed.; Daroff, R. B., Aminoff, M. J., Eds.; Academic Press: Oxford, 2014, p. 131.Google Scholar
  3. 3.
    (a) Joubert, J.; Geldenhuys, W. J.; Van der Schyf, C. J.; Oliver, D. W.; Kruger, H. G.; Govender, T.; Malan, S. F. ChemMedChem 2012, 7, 375. (b) Lipton, S. A. Nat. Rev. Drug Discovery 2006, 5, 160. (c) Wanka, L.; Iqbal, K.; Schreiner, P. R. Chem. Rev. 2013, 113, 3516.Google Scholar
  4. 4.
    (a) Schmidle, C. J.; Mansfield, R. C. J. Med. Chem. Soc. 1955, 77, 5698. (b) Prostakov, N. S.; Varlamov, A. V.; Vasil'ev, G. A. Chem. Heterocycl. Compd. 1977, 13, 639. [Khim. Geterotsikl. Soedin. 1977, 787.] (c) Thompson, D.; Reeves, P. C. J. Heterocycl. Chem. 1983, 20, 771. (d) Conway, R. J.; Valant, C.; Christopoulos, A.; Robertson, A. D.; Capuano B.; Crosby, I. T. Bioorg. Med. Chem. Lett. 2012, 22, 2560. (e) Chen, H.; Liang, X.; Xu, B.; He, X.; Huang, B.; Yuan, M. Molecules 2014, 19, 12048. (f) Anxionnat, B.; Robert, B.; George, P.; Ricci, G.; Perrin, M.-A.; Pardo, D. G.; Cossy, J. J. Org. Chem. 2012, 77, 6087. (e) Sargsyan, M. S.; Hayotsyan, S. S.; Khachatryan, A. Kh.; Badasyan, A. E.; Panosyan, G. A.; Kon'kova, S. G. Chem. Heterocycl. Compd. 2013, 48, 1805. [Khim. Geterotsikl. Soedin. 2012, 1928.]Google Scholar
  5. 5.
    (a) Klumpp, D. A.; Beauchamp, P. S.; Sanchez, G. V., Jr.; Aguirre, S.; de Leon, S. Tetrahedron Lett. 2001, 42, 5821. (b) Olah, G. A., Klumpp D. A. Superelectrophiles and their Chemistry; Wiley-Intersciense: Hoboken, 2008, p. 250.Google Scholar
  6. 6.
    Shadrikova, V. A.; Golovin, E. V.; Klimochkin, Y. N. Chem. Heterocycl. Compd. 2015, 50, 1586. [Khim. Geterotsikl. Soedin. 2014, 1725.]Google Scholar
  7. 7.
    (a) Grierson, D. S.; Harris, M.; Husson, H. J. Am. Chem. Soc. 1980, 102, 1064. (b) Wichitnithad, W.; O'Callaghan, J. P.; Miller, D. B.; Train, B. C.; Callery, P. S. Bioorg. Med. Chem. 2011, 19, 7482. (c) Rouchaud, A.; Kem, W. R. J. Heterocycl. Chem. 2010, 47, 569. (d) Terentiev, P. B.; Zilberstein, T. M.; Borisenko, A. A.; Shmorgunov, V. A.; Piskunkova, N. F.; Grishina, G. V. Chem. Heterocycl. Compd. 2003, 39, 885. [Khim. Geterotsikl. Soedin. 2003, 1027.] (e) Keay, J. G. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991, vol. 8, chap. 3.6; p. 579.Google Scholar
  8. 8.
    (a) Ischay, M. A.; Takase, M. K.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 2478. (b) Teichert, J. F.; Zhang, S.; van Zijl, A. W.; Slaa, J. W.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2010, 12, 4658.Google Scholar
  9. 9.
    (a) Eliel, E. L.; Wilen, S. H.; Doyle, M. P. Basic Organic Stereochemistry; Wiley-Interscience; New York, 2001, p. 448. (b) Salamone, M.; Martella, R.; Bietti, M. J. Org. Chem. 2012, 77, 8556.Google Scholar
  10. 10.
    (a) Klimochkin, Y. N.; Leonova, M. V.; Korzhev, I. R.; Moiseev, I. K.; Vladyko, G. V.; Korobchenko, L. V.; Boreko, E. I.; Nikolaeva, S. N. Pharm. Chem. J. 1992, 26, 616. [Khim.-Farm. Zh., 1992, 26, 58.] (b) Kevill, D. N.; Upadhyay, V. J. Phys. Org. Chem. 1997, 10, 600.Google Scholar
  11. 11.
    (a) Alkorta, I.; Elguero, J. Magn. Reson. Chem. 2004, 42, 955. (b) Basso, E. A.; Gauze, G. F.; Abraham, R. J. Magn. Reson. Chem. 2007, 45, 749. (c) Rodríguez-Franco, M. I.; Fernández-Bachiller, M. I. Magn. Reson. Chem. 2002, 40, 549. (d) Casy, A. F.; Dewar, G. H.; Al Deeb, O. A. A. Chirality 1989, 1, 202. (e) Casy, A. F.; Ogungbamila, F. O. Org. Magn. Reson. 1982, 18, 171.Google Scholar
  12. 12.
    (a) Cheng, A.; Uyeno, E.; Polgar, W.; Toll, L.; Lawson, J. A.; DeGraw, J. I.; Loew, G.; Camerman, A.; Camerman, N. J. Med. Chem. 1986, 29, 531. (b) Li, R.-L.; Liu, G.-Q.; Li, W.; Wang, Y.-M.; Li, L.; Duan, L.; Li, Y.-M. Tetrahedron 2013, 69, 5867. (c) Takemiya, A.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 6042.Google Scholar
  13. 13.
    Casy, A. F.; Dewar, G. H.; Al-Deeb, O. A. A. Magn. Reson. Chem. 1989, 27, 964.CrossRefGoogle Scholar
  14. 14.
    (a) Parker, W.; Riddell. F. G. In Aliphatic, Alicyclic, and Saturated Heterocyclic Chemistry, Vol. 1, pt. III: Five- and Six- Membered Rings; Medium Sized Rings; Bridged and Caged Systems (Carbocyclic and Saturated Heterocyclic); Parker, W., Ed.; The Chemical Society: London, 1973, p. 41. (b) Pines, H. Chemistry of Catalytic Hydrocarbon Conversions; Academic Press: New York, 1981, p. 18.Google Scholar
  15. 15.
    (a) Kevill, D. N.; Weitl, F. l. J. Am. Chem. Soc. 1968, 90, 6416. (b) Prakash, G. K. S.; Paknia, F.; Mathew, T.; Mloston, G.; Joschek, J. P.; Olah, G. A. Org. Lett. 2011, 13, 4128. (c) Beak, P.; Trancik, R. J. J. Am. Chem. Soc. 1968, 90, 2714.Google Scholar
  16. 16.
    Parr, R. G.; Szentpály, L.; Liu, S. J. Am. Chem. Soc. 1999,121, 1922.CrossRefGoogle Scholar
  17. 17.
    Peìrez, P.; Toro-Labbeì, A.; Aizman, A.; Contreras, R. J. Org. Chem. 2002, 67, 4747.CrossRefGoogle Scholar
  18. 18.
    Fürst, A.; Plattner, P. A. Helv. Chim. Acta 1949, 32, 275.CrossRefGoogle Scholar
  19. 19.
    Krumkalns, E. V.; Pfeifer, W. J. Med. Chem. 1968, 11, 1103.CrossRefGoogle Scholar
  20. 20.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, 2009.Google Scholar
  21. 21.
    Butov, G. M.; Mokhov, V. M. Russ. J. Org. Chem. 2014, 50, 447. [Zh. Org. Khim. 2014, 50, 455.]Google Scholar
  22. 22.
    Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.CrossRefGoogle Scholar
  23. 23.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vera A. Shadrikova
    • 1
    Email author
  • Evgeny V. Golovin
    • 1
  • Vadim A. Shiryaev
    • 1
  • Marat R. Baimuratov
    • 1
  • Victor B. Rybakov
    • 2
  • Yuri N. Klimochkin
    • 1
  1. 1.Samara State Technical UniversitySamaraRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations