Chemistry of Heterocyclic Compounds

, Volume 51, Issue 10, pp 883–890 | Cite as

Synthesis of monomeric methylene-linked 1,2,3-triazole glycoconjugates from allo- and glucofuranoses

  • Jeļena Grigorjeva
  • Jevgeņija Uzuleņa
  • Vitālijs RjabovsEmail author
  • Māris Turks


Carbohydrate–triazole conjugates proved themselves as valuable enzyme activity-modifying agents. Recent exploration of nontrivial conjugates in which the bonding is formed not at the glycosidic or terminal carbons of the carbohydrates, but at C-3 position showed a potential of this type of structures as the ligands for various glycosidases and galectins. Here, we report synthesis of protected monomeric 3-C-(triazolylmethyl)-substituted gluco- and alloconjugates. Diastereomeric azides are synthesized from common intermediate, 3-deoxy-1,2:5,6-di-O-isopropylidene-3-oxo-α-D-allofuranose, and used in Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reactions with commercial alkynes. The yields of the cycloaddition reactions are good to excellent under different catalytic conditions.


diacetone glucose diacetone allose carbohydrate triazole conjugates click chemistry CuAAC 


This work was supported by the Latvian Council of Science (grant No. 10.0030). The authors thank JSC ''Olainfarm'' for kind donation of diacetone-D-glucose. JSC ''Grindeks'' is acknowledged for kind donation of organic solvents.


  1. 1.
    Gonzaga, D. T. G.; da Rocha, D. R.; da Silva, F. de C.; Ferreira, V. F. Curr. Top. Med. Chem. 2013, 13, 2850.Google Scholar
  2. 2.
    Sharma, S.; Saquib, M.; Verma, S.; Mishra, N. N.; Shukla, P. K.; Srivastava, R.; Prabhakar, Y. S.; Shaw, A. K. Eur. J. Med. Chem. 2014, 83, 474.CrossRefGoogle Scholar
  3. 3.
    Parida, P. K.; Sau, A.; Ghosh, T.; Jana, K.; Biswas, K.; Raha, S.; Misra, A. K. Bioorg. Med. Chem. Lett. 2014, 24, 3865.CrossRefGoogle Scholar
  4. 4.
    (a) Koester, D. C.; Holkenbrink, A.; Werz, D. B. Synthesis 2010, 3217. (b) da Rocha, D. R.; Santos, W. C.; Lima, E. S.; Ferreira, V. F. Carbohydr. Res. 2012, 350, 14. (c) Ferreira, S.; Sodero, A. C. R.; Cardoso, M. F. C.; Lima, E. S.; Kaiser, C. R.; Silva F. P., Jr.; Ferreira, V. F. J. Med. Chem. 2010, 53, 2364. (d) Seelhorst, K.; Piernitzki, T.; Lunau, N.; Meier, C.; Hahn, U. Bioorg. Med. Chem. 2014, 22, 6430.Google Scholar
  5. 5.
    Awan, S. I.; Werz, D. B. Bioorg. Med. Chem. 2012, 20, 1846.CrossRefGoogle Scholar
  6. 6.
    Goyard, D.; Docsa, T.; Gergely, P.; Praly, J.-P.; Vidal, S. Carbohydr. Res. 2015, 402, 245.CrossRefGoogle Scholar
  7. 7.
    (a) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.Google Scholar
  8. 8.
    Uzuleņa, J.; Rjabovs, V.; Moreno Vargas, A. J.; Turks, M. Chem. Heterocycl. Compd. 2015, 51, 664. [Khim. Geterotsikl. Soed. 2015, 51, 664.]Google Scholar
  9. 9.
    Mackeviča, J.; Ostrovskis, P.; Leffler, H.; Nilsson, U. J.; Rudovica, V.; Viksna, A.; Belyakov, S.; Turks, M. ARKIVOC 2014, (iii), 90.Google Scholar
  10. 10.
    Rjabova, J.; Rjabovs, V.; Moreno Vargas, A. J.; Moreno Clavijo, E.; Turks, M. Cent. Eur. J. Chem. 2012, 10, 386.CrossRefGoogle Scholar
  11. 11.
    (a) Ostrovskis, P.; Mackeviča, J.; Kumpiņš, V.; López, Ó.; Turks, M. In Carbohydrate Chemistry: Proven Synthetic Methods; van der Marel, G.; Codee, J., Eds.; CRC Press: Boca Raton, London, New York, 2014, vol. 2, p. 275. (b) Turks, M.; Rodins, V.; Rolava, E.; Ostrovskis, P.; Belyakov, S. Carbohydr. Res. 2013, 375, 5. (c) Turks, M.; Rolava, E.; Stepanovs, D.; Mishnev, A.; Marković, D. Tetrahedron: Asymmetry 2015, 26, 952.Google Scholar
  12. 12.
    (a) Luginina, J.; Rjabovs, V.; Belyakov, S.; Turks, M. Carbohydr. Res. 2012, 350, 86. (b) Albrecht, H. P.; Moffatt, J. G. Tetrahedron Lett. 1970, 13, 1063.Google Scholar
  13. 13.
    (a) Cavender, C. J.; Shiner, V. J. J. Org. Chem. 1972, 37, 3567. (b) Strakova, I.; Kumpiņa, I.; Rjabovs, V.; Lugiņina, J.; Belyakov, S.; Turks, M. Tetrahedron: Asymmetry 2011, 22,Google Scholar
  14. 14.
    (c) Rjabovs, V.; Ostrovskis, P.; Posevins, D.; Kiseļovs, G.; Kumpiņš, V.; Mishnev, A.; Turks, M. Eur. J. Org. Chem. 2015, 5572.Google Scholar
  15. 15.
    (a) Sahabuddin, Sk.; Ghosh, R.; Achari, B.; Mandal, S. B. Org. Biomol. Chem. 2006, 4, 551. (b) Tardy, S.; Lobo Vicente, J.; Tatibouët, A.; Dujardin, G.; Rollin, P. Synthesis 2008, 3108.Google Scholar
  16. 16.
    Lugiņina, J.; Rjabovs, V.; Belyakov, S.; Turks, M. Tetrahedron Lett. 2013, 54, 5328.CrossRefGoogle Scholar
  17. 17.
    Schmidt, M. S.; Leitner, K.; Welter, M.; Wurmthaler, L. A.; Ringwald, M. Carbohydr. Res. 2014, 387, 42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jeļena Grigorjeva
    • 1
  • Jevgeņija Uzuleņa
    • 1
  • Vitālijs Rjabovs
    • 1
    Email author
  • Māris Turks
    • 1
  1. 1.Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia

Personalised recommendations