Chemistry of Heterocyclic Compounds

, Volume 51, Issue 4, pp 334–339 | Cite as

Amides of 1,3,7-triazapyrene series: synthesis by nucleophilic substitution of alkoxy groups

  • Ivan V. Borovlev
  • Oleg P. Demidov
  • Nadezhda A. Kurnosova
  • Gulminat A. Amangazieva
  • Elena K. Avakyan

The treatment of 6,8-dialkoxy-1,3,7-triazapyrenes with sodium acylamides in DMSO at room temperature resulted in ipso substitution of one alkoxy group with amide group, giving 8-acylamino-6-alkoxy-1,3,7-triazapyrenes. The reaction at 65–70°C proceeded as a tandem SNAr ipso –SN2 process, leading to the formation of 8-acylamino-6-oxo-6,7-dihydro-1,3,7-triazapyrenes.


6,8-dialkoxy-1,3,7-triazapyrenes ipso substitution of alkoxy groups nucleophilic amidation tandem SNAripso–SN2 reactions 


This work received financial support from the Ministry of Education and Science of the Russian Federation (project No. 4.141.2014/K).


  1. 1.
    (a) Corey, E. J.; Czakó, B.; Kürti, L. Molecules and Medicine; Wiley: Hoboken, 2007. (b) Travis, A. S. In The Chemistry of Anilines, Patai Series, The Chemistry of Functional Groups; Rappoport, Z., Ed.; Wiley: Chichester, 2007, pt. 2, chap. 13, p. 715. (c) Amino Group Chemistry, From Synthesis to the Life Sciences; Ricci A., Ed.; Wiley-VCH: Weinheim, 2007. (d) Gangopadhyay, P.; Radhakrishnan, T. P. Chem. Mater. 2000, 12, 3362. (e) Bag, B.; Bharadwaj, P. K. J. Phys. Chem. B 2005, 109, 4377. (f) Kubicek, S.; O'Sullivan, R. J.; August, E. M.; Hickey, E. R.; Zhang, Q.; Teodoro, M. L.; Rea, S.; Mechtler, K.; Kowalski, J. A.; Homon, C. A.; Kelly, T. A.; Jenuwein, T. Mol. Cell 2007, 25, 473.Google Scholar
  2. 2.
    Gorelik, M. V.; Efros, L. S. Fundamentals of Chemistry and Technology of Aromatic Compounds [in Russian]; Khimiya: Moscow, 1992.Google Scholar
  3. 3.
    (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727. (b) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158. (c) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338. (d) Surry, D. S.; Buchwald, S. L. Angew. Chem. 2008, 120, 6438. (e) Roiban, G.-D.; Mehler, G.; Reetz, M. T. Eur. J. Org. Chem. 2014, 2070.Google Scholar
  4. 4.
    (a) Kim, J.; Kim, J.; Chang, S. Chem.–Eur. J. 2013, 19, 7328. (b) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem. 2012, 124, 10042. c) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904. (d) Shi, J.; Zhou, B.; Yang, Y.; Li, Y. Org. Biomol. Chem. 2012, 10, 8953.Google Scholar
  5. 5.
    Wang, Q. S.; Schreiber L. Org. Lett. 2009, 11, 5178.CrossRefGoogle Scholar
  6. 6.
    (a) Stern, M. K.; Cheng, B. K. J. Org. Chem. 1993, 58, 6883. (b) Stern, M. K.; Bashkin, K. J. US Patent 5117063. (c) Gulevskaya, A. V.; Tyaglivaya, I. N.; Verbeeck, S.; Maes, B. U. W.; Tkachuk, A. V. ARKIVOC 2011, (ix), 238.Google Scholar
  7. 7.
    Borovlev, I. V; Demidov, O. P; Kurnosova, N. A; Amangasieva, G. A.; Avakyan, E. K. Chem. Heterocycl. Compd. 2015, 51, 170. [Khim. Geterotsikl. Soedin. 2015, 51, 170.]Google Scholar
  8. 8.
    (a) Borovlev, I. V.; Demidov, O. P.; Saigakova, N. A. Russ. Chem. Bull., Int. Ed. 2011, 60, 1784. [Izv. Akad. Nauk, Ser. Khim. 2011, 1755.] (b) Demidov, O. P.; Borovlev, I. V.; Pisarenko, S. V.; Nemykina, O. A.; Saigakova, N. A. Chem. Heterocycl. Compd. 2010, 46, 636. [Khim. Geterotsikl. Soedin. 2010, 791.]Google Scholar
  9. 9.
    (a) Paudler, W. W.; Chen, T.-K. J. Org. Chem. 1971, 36, 787. (b) Ryabtsova, O.; Verhelst, T.; Baeten, M.; Vande Velde, C. M. L.; Maes, B. U. W. J. Org. Chem. 2009, 74, 9440. (c) Liao, T. K.; Nyberg, W. H.; Cheng, C. C. Angew. Chem., Int. Ed. 1967, 6, 82. (d) Denny, W. A.; Atwell, G. J.; Roberts, P. B.; Anderson, R. F.; Boyd, M.; Lock, C. J. L.; Wilson, W. R. J. Med. Chem. 1992, 35, 4832.Google Scholar
  10. 10.
    (a) Borovlev, I. V.; Demidov, O. P.; Saigakova, N. A. Chem. Heterocycl. Compd. 2014, 50, 685. [Khim. Geterotsikl. Soedin. 2014, 746.] (b) Borovlev, I.; Demidov, O.; Saigakova, N.; Amangasieva, G. Eur. J. Org. Chem. 2014, 7675.Google Scholar
  11. 11.
    Saigakova, N. A.; Demidov, O. P.; Borovlev, I. V. Russ. J. Org. Chem. 2013 , 49, 1199. [Zh. Org. Khim. 2013, 49, 1215.].Google Scholar
  12. 12.
    (a) Sauer, S.; Huisgen, R. Angew. Chem. 1960, 72, 294. (b) Daniels, R.; Grady, L. T.; Bauer, L. J. Am. Chem. Soc. 1965, 87, 1531.Google Scholar
  13. 13.
    Demidov, O. P.; Borovlev, I. V.; Saigakova, N. A.; Nemykina, O. A.; Pisarenko, S. V. Chem. Heterocycl. Compd. 2013, 48, 1527. [Khim. Geterotsikl. Soedin. 2012, 1639.]Google Scholar
  14. 14.
    Minkin, V. I.; Garnovskii, A. D.; Elguero, J.; Katritzky, A. R.; Denisko, O. V. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Elsevier: New York, 2000, vol. 76, p. 157.Google Scholar
  15. 15.
    Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.CrossRefGoogle Scholar
  16. 16.
    Sharp, J.T.; Gosney, I.; Rowley, A. G. Practical Organic Chemistry [Russian translation, Moskva, V. V., Ed.]; Mir: Moscow, 1993, p. 188.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ivan V. Borovlev
    • 1
  • Oleg P. Demidov
    • 1
  • Nadezhda A. Kurnosova
    • 1
  • Gulminat A. Amangazieva
    • 1
  • Elena K. Avakyan
    • 1
  1. 1.North-Caucasus Federal UniversityStavropolRussia

Personalised recommendations