Advertisement

Chemistry of Heterocyclic Compounds

, Volume 51, Issue 4, pp 334–339 | Cite as

Amides of 1,3,7-triazapyrene series: synthesis by nucleophilic substitution of alkoxy groups

  • Ivan V. Borovlev
  • Oleg P. Demidov
  • Nadezhda A. Kurnosova
  • Gulminat A. Amangazieva
  • Elena K. Avakyan
Article

The treatment of 6,8-dialkoxy-1,3,7-triazapyrenes with sodium acylamides in DMSO at room temperature resulted in ipso substitution of one alkoxy group with amide group, giving 8-acylamino-6-alkoxy-1,3,7-triazapyrenes. The reaction at 65–70°C proceeded as a tandem SNAr ipso –SN2 process, leading to the formation of 8-acylamino-6-oxo-6,7-dihydro-1,3,7-triazapyrenes.

Keywords

6,8-dialkoxy-1,3,7-triazapyrenes ipso substitution of alkoxy groups nucleophilic amidation tandem SNAripso–SN2 reactions 

Notes

This work received financial support from the Ministry of Education and Science of the Russian Federation (project No. 4.141.2014/K).

References

  1. 1.
    (a) Corey, E. J.; Czakó, B.; Kürti, L. Molecules and Medicine; Wiley: Hoboken, 2007. (b) Travis, A. S. In The Chemistry of Anilines, Patai Series, The Chemistry of Functional Groups; Rappoport, Z., Ed.; Wiley: Chichester, 2007, pt. 2, chap. 13, p. 715. (c) Amino Group Chemistry, From Synthesis to the Life Sciences; Ricci A., Ed.; Wiley-VCH: Weinheim, 2007. (d) Gangopadhyay, P.; Radhakrishnan, T. P. Chem. Mater. 2000, 12, 3362. (e) Bag, B.; Bharadwaj, P. K. J. Phys. Chem. B 2005, 109, 4377. (f) Kubicek, S.; O'Sullivan, R. J.; August, E. M.; Hickey, E. R.; Zhang, Q.; Teodoro, M. L.; Rea, S.; Mechtler, K.; Kowalski, J. A.; Homon, C. A.; Kelly, T. A.; Jenuwein, T. Mol. Cell 2007, 25, 473.Google Scholar
  2. 2.
    Gorelik, M. V.; Efros, L. S. Fundamentals of Chemistry and Technology of Aromatic Compounds [in Russian]; Khimiya: Moscow, 1992.Google Scholar
  3. 3.
    (a) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7727. (b) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158. (c) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338. (d) Surry, D. S.; Buchwald, S. L. Angew. Chem. 2008, 120, 6438. (e) Roiban, G.-D.; Mehler, G.; Reetz, M. T. Eur. J. Org. Chem. 2014, 2070.Google Scholar
  4. 4.
    (a) Kim, J.; Kim, J.; Chang, S. Chem.–Eur. J. 2013, 19, 7328. (b) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem. 2012, 124, 10042. c) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904. (d) Shi, J.; Zhou, B.; Yang, Y.; Li, Y. Org. Biomol. Chem. 2012, 10, 8953.Google Scholar
  5. 5.
    Wang, Q. S.; Schreiber L. Org. Lett. 2009, 11, 5178.CrossRefGoogle Scholar
  6. 6.
    (a) Stern, M. K.; Cheng, B. K. J. Org. Chem. 1993, 58, 6883. (b) Stern, M. K.; Bashkin, K. J. US Patent 5117063. (c) Gulevskaya, A. V.; Tyaglivaya, I. N.; Verbeeck, S.; Maes, B. U. W.; Tkachuk, A. V. ARKIVOC 2011, (ix), 238.Google Scholar
  7. 7.
    Borovlev, I. V; Demidov, O. P; Kurnosova, N. A; Amangasieva, G. A.; Avakyan, E. K. Chem. Heterocycl. Compd. 2015, 51, 170. [Khim. Geterotsikl. Soedin. 2015, 51, 170.]Google Scholar
  8. 8.
    (a) Borovlev, I. V.; Demidov, O. P.; Saigakova, N. A. Russ. Chem. Bull., Int. Ed. 2011, 60, 1784. [Izv. Akad. Nauk, Ser. Khim. 2011, 1755.] (b) Demidov, O. P.; Borovlev, I. V.; Pisarenko, S. V.; Nemykina, O. A.; Saigakova, N. A. Chem. Heterocycl. Compd. 2010, 46, 636. [Khim. Geterotsikl. Soedin. 2010, 791.]Google Scholar
  9. 9.
    (a) Paudler, W. W.; Chen, T.-K. J. Org. Chem. 1971, 36, 787. (b) Ryabtsova, O.; Verhelst, T.; Baeten, M.; Vande Velde, C. M. L.; Maes, B. U. W. J. Org. Chem. 2009, 74, 9440. (c) Liao, T. K.; Nyberg, W. H.; Cheng, C. C. Angew. Chem., Int. Ed. 1967, 6, 82. (d) Denny, W. A.; Atwell, G. J.; Roberts, P. B.; Anderson, R. F.; Boyd, M.; Lock, C. J. L.; Wilson, W. R. J. Med. Chem. 1992, 35, 4832.Google Scholar
  10. 10.
    (a) Borovlev, I. V.; Demidov, O. P.; Saigakova, N. A. Chem. Heterocycl. Compd. 2014, 50, 685. [Khim. Geterotsikl. Soedin. 2014, 746.] (b) Borovlev, I.; Demidov, O.; Saigakova, N.; Amangasieva, G. Eur. J. Org. Chem. 2014, 7675.Google Scholar
  11. 11.
    Saigakova, N. A.; Demidov, O. P.; Borovlev, I. V. Russ. J. Org. Chem. 2013 , 49, 1199. [Zh. Org. Khim. 2013, 49, 1215.].Google Scholar
  12. 12.
    (a) Sauer, S.; Huisgen, R. Angew. Chem. 1960, 72, 294. (b) Daniels, R.; Grady, L. T.; Bauer, L. J. Am. Chem. Soc. 1965, 87, 1531.Google Scholar
  13. 13.
    Demidov, O. P.; Borovlev, I. V.; Saigakova, N. A.; Nemykina, O. A.; Pisarenko, S. V. Chem. Heterocycl. Compd. 2013, 48, 1527. [Khim. Geterotsikl. Soedin. 2012, 1639.]Google Scholar
  14. 14.
    Minkin, V. I.; Garnovskii, A. D.; Elguero, J.; Katritzky, A. R.; Denisko, O. V. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Elsevier: New York, 2000, vol. 76, p. 157.Google Scholar
  15. 15.
    Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.CrossRefGoogle Scholar
  16. 16.
    Sharp, J.T.; Gosney, I.; Rowley, A. G. Practical Organic Chemistry [Russian translation, Moskva, V. V., Ed.]; Mir: Moscow, 1993, p. 188.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ivan V. Borovlev
    • 1
  • Oleg P. Demidov
    • 1
  • Nadezhda A. Kurnosova
    • 1
  • Gulminat A. Amangazieva
    • 1
  • Elena K. Avakyan
    • 1
  1. 1.North-Caucasus Federal UniversityStavropolRussia

Personalised recommendations