Skip to main content
Log in

Facile and Rapid Synthesis of 5-Substituted 1H-Tetrazoles VIA a Multicomponent Domino Reaction Using Nickel(II) Oxide Nanoparticles as Catalyst

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

2-(1H-Tetrazol-5-yl)acrylonitrile derivatives were synthesized through multicomponent domino Knoevenagel condensation/1,3-dipolar cycloaddition reaction of carbonyl compounds, malononitrile, and sodium azide in the presence of NiO nanoparticles as a highly efficient catalyst. This method has the advantage of very short reaction times, high yields, simple methodology, and easy work-up. The catalyst can be recovered and reused while maintaining good yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. G. F. Holland and J. N. Pereira, J. Med. Chem., 10, 149 (1967).

    Article  CAS  Google Scholar 

  2. F. Ek, L. G. Wistrand, and T. Frejd, Tetrahedron, 59, 6759 (2003).

    Article  CAS  Google Scholar 

  3. P. Rhonnstad and D. Wensbo, Tetrahedron Lett., 43, 3137 (2002).

    Article  CAS  Google Scholar 

  4. M. A. Hiskey, D. Chavez, and D. L. Naud, Proc. Int. Pyrotech. Semin., 27, 3 (2000).

    Google Scholar 

  5. R. P. Singh, R. D. Verma, D. T. Meshri, and J. M. Shreeve, Angew. Chem., Int. Ed., 45, 3584 (2006).

    Article  CAS  Google Scholar 

  6. H. Xue, B. Twamley, and J. M. Shreeve, J. Mater. Chem., 15, 3459 (2005).

    Article  CAS  Google Scholar 

  7. G. H. Tao, Y. Guo, Y. H. Joo, B. Twamley, and J. M. Shreeve, J. Mater. Chem., 18, 5524 (2008).

    Article  CAS  Google Scholar 

  8. D. Kundu, A. Majee, and A. Hajra, Tetrahedron Lett., 50, 2668 (2009).

    Article  CAS  Google Scholar 

  9. W. K. Su, Z. Hong, W. G. Shan, and X. X. Zhang, Eur. J. Org. Chem., 2723 (2006).

  10. T. M. Potewar, S. A. Siddiqui, R. J. Lahoti, and K. V. Srinivasan, Tetrahedron Lett., 48, 1721 (2007).

    Article  CAS  Google Scholar 

  11. S. N. Dighe, K. S. Jain, and K. V. Srinivasan, Tetrahedron Lett., 50, 6139 (2009).

    Article  CAS  Google Scholar 

  12. D. P. Matthews, J. E. Green, and A. J. Shuker, J. Comb. Chem., 2, 19 (2000).

    Article  CAS  Google Scholar 

  13. D. Amantini, R. Beleggia, F. Fringuelli, F. Pizzo, and L. Vaccaro, J. Org. Chem., 69, 2896 (2004).

    Article  CAS  Google Scholar 

  14. Y. S. Gyoung, J. G. Shim, and Y. Yamamoto, Tetrahedron Lett., 41, 4193 (2000).

    Article  CAS  Google Scholar 

  15. M. L. Kantam, K. B. Shiva Kumar, and C. Sridhar, Adv. Synth. Catal., 347, 1212 (2005).

    Article  CAS  Google Scholar 

  16. T. Jin, F. Kitahara, S. Kamijo, and Y. Yamamoto, Tetrahedron Lett., 49, 2824 (2008).

    Article  CAS  Google Scholar 

  17. K. J. Klabunde and R. S. Mulukutla, in: Nanoscale Materials in Chemistry, Wiley-Interscience, New York (2001), p. 223.

    Book  Google Scholar 

  18. C. L. Carnes and K. J. Klabunde, Langmuir, 16, 3764 (2000).

    Article  CAS  Google Scholar 

  19. B. M. Choudary, M. L. Kantam, K. V. S. Ranganath, K. Mahendar, and B. Sreedhar, J. Am. Chem. Soc., 126, 3396 (2004).

    Article  CAS  Google Scholar 

  20. B. M. Choudary, R. S. Mulukutla, and K. J. Klabunde, J. Am. Chem. Soc., 125, 2020 (2003).

    Article  CAS  Google Scholar 

  21. V. Polshettiwar, B. Baruwati, and R. S. Varma, Green Chem., 11, 127 (2009).

    Article  CAS  Google Scholar 

  22. H. Sachdeva, D. Dwivedi, R. R. Bhattacharjee, S. Khaturia, and R. Saroj, J. Chem., DOI: 10.1155/2013/606259 (2013).

    Google Scholar 

  23. B. Palakshi Reddy, P. Iniyavan, S. Sarveswari, and V. Vijayakumar, Chin. Chem. Lett., DOI: 10.1016/j.cclet.2014.06.026 (2014).

    Google Scholar 

  24. J. Zhu, H. Bienaymé, Multicomponent Reactions, Wiley-VCH, Weinheim (2005).

    Book  Google Scholar 

  25. Z. N. Tisseh, M. Dabiri, M. Nobahar, H. R. Khavasi, and A. Bazgir, Tetrahedron, 68, 1769 (2012).

    Article  CAS  Google Scholar 

  26. M. Jeyachandran and K. Shriram, Int. J. Appl. Biol. Pharm. Technol., 2, No. 2, 349 (2011).

    Google Scholar 

  27. J. Safaei-Ghomi and M. A. Ghasemzadeh, J. Chem. Sci., 125, 1003 (2013).

    Article  CAS  Google Scholar 

  28. A. Ziarati, J. Safaei-Ghomi, and S. Rohani, Ultrason. Sonochem., 20, 1069 (2013).

    Article  CAS  Google Scholar 

  29. J. Safaei-Ghomi and S. Zahedi, Monatsh. Chem., 144, 687 (2013).

    Article  Google Scholar 

  30. Y. Z. Zheng and M. L. Zhang, Mater. Lett., 61, 3967 (2007).

    Article  CAS  Google Scholar 

  31. H. Guan, C. Shao, S. Wen, B. Chen, J. Gong, and X. Yang, Inorg. Chem. Commun., 6, 1302 (2003).

    Article  CAS  Google Scholar 

  32. P. S. Patil and L. D. Kadam, Appl. Surf. Sci., 199, 211 (2002).

    Article  CAS  Google Scholar 

  33. H. E. Gottlieb, V. Kotlyar, and A. Nudelman, J. Org. Chem., 62, 7512 (1997).

    Article  CAS  Google Scholar 

Download references

The authors gratefully acknowledge the partial financial support of this work by the University of Kashan Research Council by Grant No. 159196/XIX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Safaei-Ghomi.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1706–1713, November, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei-Ghomi, J., Paymard-Samani, S. Facile and Rapid Synthesis of 5-Substituted 1H-Tetrazoles VIA a Multicomponent Domino Reaction Using Nickel(II) Oxide Nanoparticles as Catalyst. Chem Heterocycl Comp 50, 1567–1574 (2015). https://doi.org/10.1007/s10593-014-1625-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-014-1625-x

Keywords

Navigation