Advertisement

Chemistry of Heterocyclic Compounds

, Volume 50, Issue 10, pp 1496–1500 | Cite as

Bimolecular Condensation of 1-(para-tolyl)-and 1-(biphenyl-4-yl)-3,4,4-trichloro-3-buten-1-ones to 2,3,4,6-substituted 4Н-pyrans*

  • V. I. PotkinEmail author
  • S. K. Petkevich
  • P. V. Kurman
  • G. G. Levkovskaya
  • L. S. Ivashkevich
  • A. S. Lyakhov
LETTERS TO THE EDITOR

Compounds of pyran series have been known for a long time, yet they still attract a steady interest due to the high biological activity caused by the affinity of pyran fragment towards various receptors [1, 2, 3]. The biological action of pyrans largely depend on the functional groups bonded to the heterocycle, which also define the possibilities of using these compounds for directed synthesis of useful products [4, 5, 6]. Functionally substituted pyrans are structural fragments of many natural biologically active compounds [7], pesticides [8], antibacterials [9, 10, 11], and antitumor drugs [12, 13]. Besides that, 4-methylene-4Н-pyrans are considered as promising materials for organic LED devices [14].

Various methods for the construction of pyran heterocycle are known, including those based on the use of unsaturated ketones. Thus, alkyl β,β-dichlorovinyl ketones, containing an activated methylene group, undergo crotonic condensation in the presence of anhydrous AlCl3 or Mg(ClO4)2...

Keywords

aryl trichloroallyl ketones guanidine pyrans condensation heterocyclization isomerization tautomerism 

Notes

This work received financial support from the Belarusian Republican Foundation for Fundamental Research (grant Kh12СО-012) and the Siberian Branch of Russian Academy of Sciences (grant No. 21).

Supplementary material

10593_2014_1614_MOESM1_ESM.pdf (377 kb)
ESM 1 (PDF 376 kb)

References

  1. 1.
    A. Todorovic and C. Haskell-Luevano, Peptides, 26, 2026 (2005).CrossRefGoogle Scholar
  2. 2.
    P. N. Praveen Rao, M. Amini, H. Li, A. G. Habeeb, and E. E. Knaus, J. Med. Chem., 46, 4872 (2003).CrossRefGoogle Scholar
  3. 3.
    P. N. Praveen Rao, M. J. Uddin, and E. E. Knaus, J. Med. Chem., 47, 3972 (2004).CrossRefGoogle Scholar
  4. 4.
    G. P. Ellis, in: A. R. Katritzky and C. W. Rees (editors), Comprehensive Heterocyclic Chemistry: Pyrans and Fused Pyrans: (ii) Reactivity, Vol. 3, Pergamon Press, Oxford (1984), p. 647.CrossRefGoogle Scholar
  5. 5.
    K. Afarinkia, T. D. Nelson, M.V. Vinader, and G. H. Posner, Tetrahedron, 48, 9111 (1992).CrossRefGoogle Scholar
  6. 6.
    K. Kranjc and M. Kočevar, ARKIVOC, i, 333 (2013).Google Scholar
  7. 7.
    G. P. McGlacken and I. J. S. Fairlamb, Nat. Prod. Rep., 22, 369 (2005).CrossRefGoogle Scholar
  8. 8.
    E. A. Hafez, M. H. Elnagdi, A. A. Elagamey, and F. A. M. El-Taweel, Heterocycles, 26, 903 (1987).CrossRefGoogle Scholar
  9. 9.
    R. R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari, and D. Sriram, Bioorg. Med. Chem. Lett., 17, 6459 (2007).CrossRefGoogle Scholar
  10. 10.
    I. J. S. Fairlamb, L. R. Marrison, J. M. Dickinson, F.-J. Lu, and J. P. Schmidt, Bioorg. Med. Chem., 12, 4285 (2004).CrossRefGoogle Scholar
  11. 11.
    M. Kidwai, S. Saxena, P. Mothsra, R. Mohan, and S. Biswas, Bioorg. Med. Chem. Lett., 15, 4295 (2005).CrossRefGoogle Scholar
  12. 12.
    J. L. Wang, D. Liu, Z. J. Zhang, S. Shan, X. Han, S. M. Srinivasula, C. M. Croce, E. S. Alnemri, and Z. Huang, Proc. Natl. Acad. Sci. USA, 97, 7124 (2000).CrossRefGoogle Scholar
  13. 13.
    Y. Dong, K. Nakagawa-Goto, C.-Y. Lai, S. L. Morris-Natschke, K. F. Bastow, and K.-H. Lee, Bioorg. Med. Chem. Lett., 21, 2341 (2011).CrossRefGoogle Scholar
  14. 14.
    C.-T. Chen, Chem. Mater., 16, 4389 (2004).CrossRefGoogle Scholar
  15. 15.
    A. N. Mirskova, G. G. Levkovskaya, and M. G. Voronkov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 26, 1677 (1977). [Izv. Akad. Nauk SSSR, Ser. Khim., 8, 1816 (1977).]CrossRefGoogle Scholar
  16. 16.
    R. S. Gouhar and M. Youns, Res. J. Pharm. Biol. Chem. Sci., 5 680 (2014).Google Scholar
  17. 17.
    V. I. Potkin, R. V. Kaberdin, S. K. Petkevich, and P. V. Kurman, Russ. J. Org. Chem., 38, 1099 (2002). [Zh. Org. Khim., 38, 1150 (2002).]CrossRefGoogle Scholar
  18. 18.
    V. I. Potkin, N. A. Bumagin, S. K. Petkevich, A. V. Kletskov, Yu. S. Zubenko, N. E. Golantsov, M. V. Livantsov, D. S. Belov, and I. S. Veselov, Dokl. Nat. Akad. Nauk Belarusi, 57, 67 (2013).Google Scholar
  19. 19.
    S. K. Petkevich, E. A. Dikusar, V. I. Potkin, R. V. Kaberdin, K. L. Moiseichuk, A. P. Yuvchenko, and P. V. Kurman, Russ. J. Gen. Chem., 74, 586 (2004). [Zh. Obsch. Khim, 74, 642 (2004).]CrossRefGoogle Scholar
  20. 20.
    A. Roedig and W. Ritschel, Liebigs Ann. Chem., 1, 13 (1983).CrossRefGoogle Scholar
  21. 21.
    A. Roedig and W. Ritschel, Chem. Ber., 116, 1595 (1983).CrossRefGoogle Scholar
  22. 22.
    V. V. Takhistov, Practical Mass Spectrometry of Organic Compounds [in Russian], Izd-vo LGU, Leningrad (1977), p. 265.Google Scholar
  23. 23.
    V. V. Takhistov, А. А. Rodin, and B. N. Maksimova, Usp. Khim., 60, 2143 (1991).CrossRefGoogle Scholar
  24. 24.
    A. Steyermark, Quantitative Organic Microanalysis, Academic Press, New York, London (1961).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. I. Potkin
    • 1
    Email author
  • S. K. Petkevich
    • 1
  • P. V. Kurman
    • 2
  • G. G. Levkovskaya
    • 3
  • L. S. Ivashkevich
    • 4
  • A. S. Lyakhov
    • 4
  1. 1.Institute of Physical Organic ChemistryNational Academy of Sciences of BelarusMinskBelarus
  2. 2.Institute of Bioorganic ChemistryNational Academy of Sciences of BelarusMinskBelarus
  3. 3.A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of SciencesIrkutskRussia
  4. 4.Research Institute of Physical Chemical ProblemsBelarusian State UniversityMinskBelarus

Personalised recommendations