Chemistry of Heterocyclic Compounds

, Volume 50, Issue 10, pp 1464–1470 | Cite as

Application of a Ball Milling Technique for the Condensation of Anthranilic Hydrazides with Aromatic Aldehydes Towards 4-Quinazolinone Derivatives*

  • T. Magyar
  • F. Miklós
  • L. Lázár
  • F. FülöpEmail author

An environmentally friendly method was applied to prepare anthranilic hydrazones and quinazolin-4(1H)-ones from anthranilic hydrazides and a number of aldehydes in solventless medium. The condensations proceeded smoothly under ball milling conditions at room temperature, and the products were obtained in high purity and yield.


hydrazides quinazolinones ball milling reactions mechanochemistry solventless reactions 


We are grateful to the Hungarian Research Foundation (OTKA NK81371) and TÁMOP-4.2.2/A-11/1/KONV-2012-0035 for financial support.


  1. 1.
    A. V Milyutin, N. V. Safonova, V. P. Chesnokov, F. Y. Nazmedtinov, E. V. Voronina, I. V. Krylova, Yu. S. Andreichikov, V. E. Kolla, and Yu. V. Kozhevnikov, Pharm. Chem. J., 30, 310 (1996). [Khim.-Farm. Zh., 30, № 5, 26 (1996).]CrossRefGoogle Scholar
  2. 2.
    G. Verma, A. Marella, M. Shaquiquzzaman, M. Akhtar, M. R. Ali, and M. M. Alam, J. Pharm. BioAllied Sci., 6, 69 (2014).CrossRefGoogle Scholar
  3. 3.
    N. T. Patil, P. G. V. V. Lakshmi, B. Sridhar, S. Patra, M. P. Bhadra, and C. R. Patra, Eur. J. Org. Chem., 1790 (2012).Google Scholar
  4. 4.
    D.-S. Chen, G.-L. Dou, Y.-L. Li, Y. Liu, and X.-S. Wang, J. Org. Chem., 78, 5700 (2013).CrossRefGoogle Scholar
  5. 5.
    K. S. Kumar, P. M. Kumar, V. S. Rao, A. A. Jafar, C. L. T. Meda, R. Kapavarapu, K. V. L. Parsa, and M. Pal, Org. Biomol. Chem., 10, 3098 (2012).CrossRefGoogle Scholar
  6. 6.
    X.-S. Wang, J. Sheng, L. Lu, K. Yang, and Y.-L. Li, ACS Comb. Sci., 13, 196 (2011).CrossRefGoogle Scholar
  7. 7.
    A. A. Mohammadi, H. Rohi, and A. A. Soorki, J. Heterocycl. Chem., 50, 1129 (2013).Google Scholar
  8. 8.
    Q.-S. Ding, J.-L. Zhang, J.-X. Chen, M.-C. Liu, J.-C. Ding, and H.-Y. Wu, J. Heterocycl. Chem., 49, 375 (2012).CrossRefGoogle Scholar
  9. 9.
    F. Miklós and F. Fülöp, Eur. J. Org. Chem., 959 (2010).Google Scholar
  10. 10.
    M. Ferguson, N. Giri, X. Huang, D. Apperley, and S. T. James, Green Chem., 16, 1374 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Gopalakrishnan, J. Thanusu, and V. Kanagarajan, J. Korean Chem. Soc., 52, 523 (2008).CrossRefGoogle Scholar
  12. 12.
    F. Miklós, V. Hum, and F. Fülöp, ARKIVOC, vi, 25 (2014).Google Scholar
  13. 13.
    A. Stolle, T. Szuppa, S. E. S. Leonhard, and B. Ondruschka, Chem. Soc. Rev., 40, 2317 (2011).CrossRefGoogle Scholar
  14. 14.
    K. Neuvonen, F. Fülöp, H. Neuvonen, M. Simeonov, and K. Pihlaja, J. Phys. Org. Chem., 10, 55 (1997).CrossRefGoogle Scholar
  15. 15.
    K. Neuvonen, F. Fülöp, H. Neuvonen, A. Koch, and E. Kleinpeter, J. Phys. Org. Chem., 21, 173 (2008).CrossRefGoogle Scholar
  16. 16.
    A. Yu. Ershov, N. A. Lovushkina, I. V. Lagoda, S. I. Yakimovich, I. V. Zerova, V. V. Pakal’nis, and V. V. Shamanin, Chem. Heterocycl. Compd., 45, 965 (2009). [Khim. Geterotsikl. Soedin., 1214 (2009).]CrossRefGoogle Scholar
  17. 17.
    N. P. Peet and E. W. Huber, Heterocycles, 35, 315 (1993).CrossRefGoogle Scholar
  18. 18.
    D. Tan, V. Štrukil, C. Mottillo, and T. Friščić, Chem. Commun., 50, 5248 (2014).CrossRefGoogle Scholar
  19. 19.
    F. Fülöp, M. Simeonov, and K. Pihlaja, Tetrahedron, 48, 531 (1992).CrossRefGoogle Scholar
  20. 20.
    G. Bonola and E. Sianesi, J. Med. Chem., 13, 329 (1970).CrossRefGoogle Scholar
  21. 21.
    P. P. Reddy, C. K. Reddy, and P. S. Reddy, Bull. Chem. Soc. Jpn., 59, 1575 (1986).CrossRefGoogle Scholar
  22. 22.
    K.-C. Liu and M.-K. Hu, Arch. Pharm. (Weinheim, Ger.), 320, 166 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary

Personalised recommendations