Chemistry of Heterocyclic Compounds

, Volume 50, Issue 10, pp 1450–1456 | Cite as

Microwave-Assisted Synthesis of Fused 3-Thiocarbamoylquinolines by Reinhoudt Reaction and their Modification by Hantzsch Reaction

  • A. Yu. Platonova
  • A. A. Poluikova
  • O. A. Trofimova
  • T. V. Glukhareva
  • Yu. Yu. MorzherinEmail author

We have shown that the reaction of 2-dialkylaminobenzaldehydes with cyanothioacetamide leading to Knoevenagel condensation products and their cyclization according to tert-amino effect mechanism, may be significantly accelerated by using a microwave reactor. The synthesized tetrahydroquinolinо-3-carbothioamides reacted with α-bromoacetophenone in microwave reactor to give 3–(1,3-thiazol-2-yl)tetrahydroquinolines.


quinolines thiazoles thioamides Hantzsch reaction Knoevenagel condensation Reinhoudt reaction tert-amino effect microwave irradiation 


  1. 1.
    O. Meth-Cohn, in: A. R. Katritzky (editor), Advances in Heterocyclic Chemistry, Vol. 65, Academic Press, New York (1996), p. 1.Google Scholar
  2. 2.
    P. Mátyus, O. Éliás, P. Tapolcsányi, Á. Polonka-Bálint, and B. Halász-Dajka, Synthesis, 2625 (2006).Google Scholar
  3. 3.
    W. Chen, R.G. Wilde, and D. Seidel, Org. Lett., 16, 730 (2014).CrossRefGoogle Scholar
  4. 4.
    N. P. Belskaya, V. A. Bakulev, T. G. Deryabina, J. O. Subbotina, M. I. Kodess, W. Dehaen, S. Toppet, K. Robeyns, and L. Van Meervelt, Tetrahedron, 65, 7662 (2009).CrossRefGoogle Scholar
  5. 5.
    M. A. Povalyakhina, A. F. Pozharskii, O. V. Dyablo, V. A. Ozeryanskii, and O. V. Ryabtsova, Mendeleev Commun., 20, 36 (2010).CrossRefGoogle Scholar
  6. 6.
    W. Verboom and D. N. Reinhoudt, Recl. Trav. Chim. Pays-Bas, 109, 311 (1990).CrossRefGoogle Scholar
  7. 7.
    A. Yu. Platonova, T. V. Glukhareva, O. A. Zimovets, and Yu. Yu. Morzherin, Chem. Heterocycl. Compd., 49, 357 (2013). [Khim. Geterotsikl. Soedin., 386 (2013).]Google Scholar
  8. 8.
    A. Yu. Platonova, E. V. Deeva, O. A. Zimovets, D. V. Shatunova, O. S. El’tsov, P. A. Slepukhin, T. V. Glukhareva, and Yu. Yu. Morzherin, Russ. Chem. Bull., Int. Ed., 60, 961 (2011). [Izv. Akad. Nauk, Ser. Khim., 60, 937 (2011).]Google Scholar
  9. 9.
    E. D’yachenko, T. Glukhareva, L. Dyudya, O. Eltsov, and Y. Morzherin, Molecules, 10, 1101 (2005).CrossRefGoogle Scholar
  10. 10.
    E. V. D’yachenko, T. V. Glukhareva, E. F. Nikolaenko, A. V. Tkachev, and Yu. Yu. Morzherin, Russ. Chem. Bull., Int. Ed., 53, 1240 (2004). [Izv. Akad. Nauk, Ser. Khim., 53, 1191 (2004).]Google Scholar
  11. 11.
    K. A. Krasnov and V. G. Kartsev, Chem. Nat. Compd., 46, 915 (2011). [Khim. Prirod. Soedin., 46, 779 (2011).]Google Scholar
  12. 12.
    T. V. Glukhareva, E. P. Klimova, A. Yu. Platonova, and Yu. Yu. Morzherin, Chem. Heterocycl. Compd., 44, 759 (2008). [Khim. Geterotsikl. Soedin., 942 (2008).]Google Scholar
  13. 13.
    J. C. Ruble, A. R. Hurd, T. A. Johnson, D. A. Sherry, M. R. Barbachyn, P. L. Toogood, G. L. Bundy, D. R. Graber, and G. M. Kamilar, J. Am. Chem. Soc., 131 , 3991 (2009). CrossRefGoogle Scholar
  14. 14.
    T. V. Glukhareva, P. E. Kropotina, M. F. Kosterina, Yu. I. Nein, E. V. Deeva, and Yu. Yu. Morzherin, Chem. Heterocycl. Compd., 43, 76 (2007). [Khim. Geterotsikl. Soedin., 90 (2007).]Google Scholar
  15. 15.
    A. C. Sather, O. B. Berryman, and J. Rebek, Jr., Org. Lett., 14 , 1600 (2012). CrossRefGoogle Scholar
  16. 16.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, J. Appl. Cryst., 42, 339 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Yu. Platonova
    • 1
  • A. A. Poluikova
    • 1
  • O. A. Trofimova
    • 1
  • T. V. Glukhareva
    • 1
  • Yu. Yu. Morzherin
    • 1
    Email author
  1. 1.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations