Advertisement

Chemistry of Heterocyclic Compounds

, Volume 50, Issue 10, pp 1404–1412 | Cite as

Synthesis and Antibacterial Activity of 5-Phthalate and 5-Glutarate Derivatives of Milbemycins A3/A4*

  • J. Lugiņina
  • Ē. Bizdēna
  • A. Leonciks
  • V. Kumpiņš
  • I. Grīnšteine
  • M. Turks
Article

Naturally occurring 16-membered macrolides milbemycins A3 and A4 were selectively esterified at their 5-OH group with phthalic and glutaric anhydrides. The obtained monoesters were further functionalized by amide formation. Propargylamide derivatives were demonstrated to undergo 1,2,3-triazole formation upon treatment with organic azides in the presence of copper catalyst. Some of the synthesized compounds exhibited useful levels of antibacterial properties against Staphylococcus aureus and Staphylococcus epidermidis.

Keywords

milbemycin A3 milbemycin A4 antibacterial activity Staphylococcus aureus Staphylococcus epidermidis 

Notes

This work was supported by the ERDF project 2DP/2.1.1.1.0/10/APIA/VIAA/045.

Supplementary material

10593_2014_1604_MOESM1_ESM.pdf (5.9 mb)
ESM 1 The Supplementary file containing experimental and HPLC data, as well as 1H and 13C NMR spectra of compounds 211 a,b, is available to authorized users. (PDF 6053 kb)

References

  1. 1.
    H. G. Davies and R. H. Green, Chem. Soc. Rev., 20, 211 (1991).CrossRefGoogle Scholar
  2. 2.
    H. G. Davies and R. H. Green, Nat. Prod. Rep., 3, 87 (1986)CrossRefGoogle Scholar
  3. 3.
    I. Putter, US Pat. Appl. 4144352.Google Scholar
  4. 4.
    H. G. Davies and R. H. Green, Chem. Soc. Rev., 20, 271 (1991).CrossRefGoogle Scholar
  5. 5.
    E. Bizdena, S. Belyakov, M. Jure, I. Grinsteine, V. Kumpiņš, and M. Turks, Nat. Prod. Res., 27, 1936 (2013).CrossRefGoogle Scholar
  6. 6.
    T. Sunazuka, S. Omura, S. Iwasaki, and S. Ōmura, in: S. Ōmura (editor), Macrolide Antibiotics: Chemistry, Biology, and Practice, Academic Press, Amsterdam, Boston (2002), p. 99.Google Scholar
  7. 7.
    A. Kaoukhov and C. Cousin, US Pat. Appl. 2012065256.Google Scholar
  8. 8.
    W. Xiang, A. Gao, H. Liang, C. Li, J. Gao, Q. Wang, B. Shuang, J. Zhang, Y. Yan, and X. Wang, Toxicol. In Vitro, 24, 1474 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Jung, A. Saito, G. Buescher, M. Maurer, and J.-F. Graf, in: J. Vercruysse and R. S. Rew (editors), Macrocyclic Lactones in Antiparasitic Therapy, CABI Publishing, New York (2002), p. 51.CrossRefGoogle Scholar
  10. 10.
    W. C. Campbell, Curr. Pharm. Biotechnol., 13, 853 (2012).CrossRefGoogle Scholar
  11. 11.
    S. Naito, T. Nanba, Y. Owatari, Y. Nakada, S. Muramatsu, and J. Ide, J. Antibiot., 47, 233 (1994).CrossRefGoogle Scholar
  12. 12.
    J. P. Lumaret, F. Errouissi, K. Floate, J. Römbke, and K. Wardhaugh, Curr. Pharm. Biotechnol., 13, 1004 (2012).CrossRefGoogle Scholar
  13. 13.
    A. P. Robertson, S. K. Buxton, S. Puttachary, S. M. Williamson, A. J. Wolstenholme, C. Neveu, J. Cabaret, C. L. Charvet, and R. J. Martin, in: C. R. Caffrey (editor), Parasitic Helminths: Targets, Screens, Drugs and Vaccines, Wiley-VCH Verlag GmbH & Co. KGaA, Singapore (2012), p. 233.CrossRefGoogle Scholar
  14. 14.
    P. Przybylski, Curr. Org. Chem., 15, 328 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. Igarashi, H. Ogura, K. Furihata, N. Oku, C. Indananda, and A. Thamchaipenet, J. Nat. Prod., 74, 670 (2011).CrossRefGoogle Scholar
  16. 16.
    H.-Q. Pan, S.-Y. Zhang, N. Wang, Z.-L. Li, H.-M. Hua, J.-C. Hu, and S.-J. Wang, Mar. Drugs, 11, 3891 (2013).CrossRefGoogle Scholar
  17. 17.
    L. Vale Silva, M. Sanguinetti, P. Vandeputte, R. Torelli, B. Rochat and D. Sanglard, Antimicrob. Agents Chemother., 57, 873 (2013).CrossRefGoogle Scholar
  18. 18.
    H. Lin, T. Annamalai, P. Bansod, Y.-C. Tse-Dinh, and D. Sun, Med. Chem. Commun., 4, 1613 (2013).CrossRefGoogle Scholar
  19. 19.
    M. Krátký, J. Vinšová, and J. Stolaříková, Molecules, 17, 12812 (2012).CrossRefGoogle Scholar
  20. 20.
    M. R. Banday, N. N. Farshori, A. Ahmad, A. U. Khan, and A. Rauf, Eur. J. Med. Chem., 45, 1459 (2010).CrossRefGoogle Scholar
  21. 21.
    P. Maienfisch and E. Sturm, US Pat. Appl. 4778809.Google Scholar
  22. 22.
    J. Ide, S. Muramatsu, Y. Nakada, N. Kitano, M. Yajima, and Y. Ohkura, EP Pat. Appl. 0102721.Google Scholar
  23. 23.
    C.-H. Liang, J. Duffield, A. Romero, Y.-H. Chiu, S. Sucheck, K. Marby, Y.-K. Shue, Y. Ichikawa, C.-K. Hwang, D. Rabuka, and S. Yao, US Pat. Appl. 20130345410.Google Scholar
  24. 24.
    C. Agouridas, A. Denis, J.-M. Auger, Y. Benedetti, A. Bonnefoy, F. Bretin, J.-F. Chantot, A. Dussarat, C. Fromentin, S. G. D'Ambrières, S. Lachaud, P. Laurin, O. Le Martret, V. Loyau, and N. Tessot, J. Med. Chem., 41, 4080 (1998).CrossRefGoogle Scholar
  25. 25.
    D. Schillaci, S. Petruso, M. V. Raimondi, M. G. Cusimano, S. Cascioferro, M. Scalisi, M. A. La Giglia, and M. Vitale, Biofouling, 26, 433 (2010).CrossRefGoogle Scholar
  26. 26.
    D. Zicane, Z. Tetere, I. Mierina, M. Turks, I. Ravina, and A. Leonciks, J. Chem. Pharmaceut. Res., 6, 1153 (2014).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • J. Lugiņina
    • 1
  • Ē. Bizdēna
    • 1
  • A. Leonciks
    • 2
  • V. Kumpiņš
    • 1
  • I. Grīnšteine
    • 1
    • 3
  • M. Turks
    • 1
  1. 1.Riga Technical UniversityRigaLatvia
  2. 2.Latvian Biomedical Research and Study CenterRigaLatvia
  3. 3.PharmIdea Ltd.OlaineLatvia

Personalised recommendations