Advertisement

Chemistry of Heterocyclic Compounds

, Volume 50, Issue 10, pp 1367–1387 | Cite as

Harmicine, a Tetracyclic Tetrahydro-β-Carboline: From the First Synthetic Precedent to Isolation from Natural Sources to Target-Oriented Synthesis (Review)*

  • C. S. Lood
  • A. M. P. KoskinenEmail author
Article

Harmicine, a chiral tetrahydro-β-carboline with a rare tetracyclic pyrrolidine framework, was isolated from the plant Kopsia griffithii in 1998. Before that, harmicine had already appeared frequently in the chemical literature as a starting material for natural product synthesis and it had been used as a model substrate in various methodology studies. Herein we review the relevant information available on this heterocyclic natural product before and after its isolation and classification as a natural product.

Keywords

tetrahydro-β-carboline asymmetric synthesis Bischler–Napieralski reaction natural product Pictet–Spengler reaction 

References

  1. 1.
    I. Chakraborty and S. Jana, Synthesis, 45, 3325 (2013).CrossRefGoogle Scholar
  2. 2.
    T.-S. Kam and K.-H. Lim, in: G. A. Cordell (editor ), The Alkaloids, Vol. 66, Academic Press, London (2008), p. 1.CrossRefGoogle Scholar
  3. 3.
    3. R. B. Woodward, F. E. Bader, H. Bickel, A. J. Frey, and R. W. Kierstead, J. Am. Chem. Soc., 78, 2023 (1956).CrossRefGoogle Scholar
  4. 4.
    M. Lounasmaa, P. Hanhinen, and M. Westersund, in: G. A. Cordell (editor), The Alkaloids, Vol. 52, Academic Press, San Diego (1999), p. 103.CrossRefGoogle Scholar
  5. 5.
    M. Lounasmaa and A. Tolvanen, in: G. A. Cordell (editor), The Alkaloids, Vol. 42, Academic Press, San Diego (1992), p. 1.CrossRefGoogle Scholar
  6. 6.
    T.-S. Kam and K.-M. Sim, Phytochemistry, 47, 145 (1998).CrossRefGoogle Scholar
  7. 7.
    N. V. Koninklijke, Pharmaceutische Fabrieken v/h Brocades-Stheeman & Pharmacia, Pat. Appl. BE638408; Chem. Abstr., 62, 11817 (1965).Google Scholar
  8. 8.
    D. Din Belle, R. Jokela, A. Tolvanen, A. Haapalinna, A. Karjalainen, and J. Sallinen, WO Pat. Appl. 03082866.Google Scholar
  9. 9.
    H. M. Spindola, D. B. Vendramini-Costa, M. T. Rodrigues, Jr., M. A. Foglio, R. A. Pilli, and J. E. Carvalho, Pharmacol., Biochem. Behav., 102, 133 (2012).Google Scholar
  10. 10.
    S.-H. Qi, L. Miao, C.-H. Gao, Y. Xu, S. Zhang, and P.-Y. Qian, Helv. Chim. Acta, 93, 511 (2010).CrossRefGoogle Scholar
  11. 11.
    C.-E. Nge, C.-Y. Gan, Y.-Y. Low, N. F. Thomas, and T.-S. Kam, Org. Lett., 15, 4774 (2013).CrossRefGoogle Scholar
  12. 12.
    J. Kobayashi, M. Sekiguchi, S. Shimamoto, H. Shigemori, H. Ishiyama, and A. Ohsaki, J. Org. Chem., 67, 6449 (2002).CrossRefGoogle Scholar
  13. 13.
    H. Ishiyama, M. Matsumoto, M. Sekiguchi, H. Shigemori, A. Ohsaki, and J. Kobayashi, Heterocycles, 66, 651 (2005).CrossRefGoogle Scholar
  14. 14.
    T. H. Layne, S. McLean, W. F. Reynolds, and W. F. Tinto, Nat. Prod. Commun., 2, 649 (2007).Google Scholar
  15. 15.
    L. Zhang, C.-J. Zhang, D.-B. Zhang, J. Wen, X.-W. Zhao, Y. Li, and K. Gao, Tetrahedron Lett., 55, 1815 (2014).CrossRefGoogle Scholar
  16. 16.
    K. Ahmad, Y. Hirasawa, A. E. Nugroho, A. H. A. Hadi, and H. Morita, Heterocycles, 86, 1611 (2012).CrossRefGoogle Scholar
  17. 17.
    H. Irikawa, Y. Toyoda, H. Kumagai, and Y. Okumura, Bull. Chem. Soc. Jpn., 62, 880 (1989).CrossRefGoogle Scholar
  18. 18.
    S. Yahara, H. Domoto, C. Sugimura, T. Nohara, Y. Niiho, Y. Nakajima, and H. Ito, Phytochemistry, 37, 1755 (1994)CrossRefGoogle Scholar
  19. 19.
    G. Hahn and H. Werner, Ber. Dtsch. Chem. Ges., 71, 2163 (1938).CrossRefGoogle Scholar
  20. 20.
    V. T. Wieland and E. Neeb, Liebigs Ann. Chem., 600, 161 (1956).CrossRefGoogle Scholar
  21. 21.
    S. Corsano and S. Algieri, Ann. Chim. (Rome, Italy), 50, 75 (1960).Google Scholar
  22. 22.
    J. Harley-Mason, Pure Appl. Chem., 41, 167 (1975).CrossRefGoogle Scholar
  23. 23.
    K. Nagarajan, C. Weismann, H. Schmid, and P. Karrer, Helv. Chim. Acta, 46, 1212 (1963).CrossRefGoogle Scholar
  24. 24.
    G. Stork and R. K. Hill, J. Am. Chem. Soc., 79, 495 (1957).CrossRefGoogle Scholar
  25. 25.
    E. Wenkert, S. Garratt, and K. G. Dave, Can. J. Chem., 42, 489 (1964).CrossRefGoogle Scholar
  26. 26.
    J. P. Kutney, N. Abdurahman, P. Le Quesne, E. Piers, and I. Vlattas, J. Am. Chem. Soc., 88, 3656 (1966).CrossRefGoogle Scholar
  27. 27.
    D. Herbst, R. Rees, G. A. Hughes, and H. Smith, J. Med. Chem., 9, 864 (1966)CrossRefGoogle Scholar
  28. 28.
    D. R. Herbst and H. Smith, US Pat. Appl. 3943148.Google Scholar
  29. 29.
    G. H. Foster, J. Harley-Mason, and W. R. Waterfield, Chem. Commun. (London), 21a (1967).Google Scholar
  30. 30.
    B. A. Dadson, J. Harley-Mason, and G. H. Foster, Chem. Commun. (London), 1233a (1968).Google Scholar
  31. 31.
    B. A. Dadson and J. Harley-Mason, J. Chem. Soc., Chem. Commun. D, 665a (1969).Google Scholar
  32. 32.
    B. A. Dadson and J. Harley-Mason, J. Chem. Soc., Chem. Commun. D, 665b (1969).Google Scholar
  33. 33.
    J. Harley-Mason and C. G. Taylor, J. Chem. Soc., Chem. Commun. D, 812 (1970).Google Scholar
  34. 34.
    G. C. Crawley and J. Harley-Mason, J. Chem. Soc., Chem. Commun. D, 685 (1971).Google Scholar
  35. 35.
    M. J. Calverley, J. Chem. Soc., Chem. Commun., 1209 (1981).Google Scholar
  36. 36.
    W. R. Ashcroft, S. J. Martinez, and J. A. Joule, Tetrahedron, 37, 3005 (1981).CrossRefGoogle Scholar
  37. 37.
    A. I. Meyers and S. Hellring, J. Org. Chem., 47, 2229 (1982).CrossRefGoogle Scholar
  38. 38.
    A. I. Meyers, D. B. Miller, and F. H. White, J. Am. Chem. Soc., 110, 4778 (1988).CrossRefGoogle Scholar
  39. 39.
    A. I. Meyers,T. Sohda, and M. Loewe, J. Org. Chem., 51, 3108 (1986).CrossRefGoogle Scholar
  40. 40.
    A. I. Meyers and M. F. Loewe, Tetrahedron Lett., 25, 2641 (1984).CrossRefGoogle Scholar
  41. 41.
    G. Schill, H. Löwer, C. U. Priester, U. F. Windhövel, and H. Fritz, Tetrahedron, 43, 3729 (1987).CrossRefGoogle Scholar
  42. 42.
    G. Schill, C. U. Priester, U. F. Windhövel, and H. Fritz, Tetrahedron, 43, 3747 (1987).CrossRefGoogle Scholar
  43. 43.
    G. Schill, C. U. Priester, U. F. Windhövel, and H. Fritz, Tetrahedron, 43, 3765 (1987).CrossRefGoogle Scholar
  44. 44.
    S. B. Mandal, V. S. Giri, M. S. Sabeena, and S. C. Pakrashi, J. Org. Chem., 53, 4236 (1988).CrossRefGoogle Scholar
  45. 45.
    R. C. Bernotas and R. V. Cube, Tetrahedron Lett., 32, 161 (1991).CrossRefGoogle Scholar
  46. 46.
    J.-F. Carniaux, C. Kan-Fan, J. Royer, and H.-P. Husson, Tetrahedron Lett., 38, 2997 (1997).CrossRefGoogle Scholar
  47. 47.
    B. Witkop, J. B. Patrick, and M. Rosenblum, J. Am. Chem. Soc., 73, 2641 (1951).CrossRefGoogle Scholar
  48. 48.
    E. Winterfeldt, Liebigs Ann. Chem., 745, 23 (1971).CrossRefGoogle Scholar
  49. 49.
    M. Nakagana, K. Matsuki, K. Hasegawa, and T. Hino, J. Chem. Soc., Chem. Commun., 742 (1982).Google Scholar
  50. 50.
    T. Itoh, M. Miyazaki, K. Nagata, M. Yokoya, S. Nakamura, and A. Ohsawa, Heterocycles, 58, 115 (2002).CrossRefGoogle Scholar
  51. 51.
    T. Itoh, M. Miyazaki, K. Nagata, S. Nakamura, and A. Ohsawa, Heterocycles, 63, 655 (2004).CrossRefGoogle Scholar
  52. 52.
    E. Wenkert and D. P. Roychaudhuri, J. Am. Chem. Soc., 78, 6417 (1956).CrossRefGoogle Scholar
  53. 53.
    F. Bohlmann, Angew. Chem., 69, 641 (1957).CrossRefGoogle Scholar
  54. 54.
    T. Itoh, Y. Matsuya, Y. Enomoto, K. Nagata, M. Miyazaki, and A. Ohsawa, Synlett, 1799 (1999).Google Scholar
  55. 55.
    S.-H. Lim, K.-M. Sim, Z. Abdullah, O. Hiraku, M. Hayashi, K. Komiyama, and T.-S. Kam, J. Nat. Prod., 70, 1380 (2007).CrossRefGoogle Scholar
  56. 56.
    H.-J. Knölker and S. Agerwal, Synlett, 1767 (2004).Google Scholar
  57. 57.
    S. Agerwal and H.-J. Knölker, Org. Biomol. Chem., 2, 3060 (2004).CrossRefGoogle Scholar
  58. 58.
    T. Kawate, M. Nakagawa, H. Yamazaki, M. Hirayama, and T. Hino, Chem. Pharm. Bull., 41, 287 (1993).CrossRefGoogle Scholar
  59. 59.
    Review on the Bischler–Napieralski reaction: W. M. Whaley and T. R. Govindachari, in: R. Adams (editor), Organic Reactions, Vol. VI, John Wiley, New York (1951), p. 74.Google Scholar
  60. 60.
    Mechanistic investigation of the Bischler–Napieralski reaction: G. Fodor and S. Nagubandi, Tetrahedron, 36, 1279 (1980).Google Scholar
  61. 61.
    Mechanistic considerations regarding the Bischler–Napieralski reaction of N-acyltryptamines: J. R. Frost, B. R. P. Gaudillière, and A. E. Wick, J. Chem. Soc., Chem Commun., 895 (1985).Google Scholar
  62. 62.
    B. Hoefgen, M. Decker, P. Mohr, A. M. Schramm, S. A. F. Rostom, H. El-Subbagh, P. M. Schweikert, D. R. Rudolf, M. U. Kassack, and J. Lehmann, J. Med. Chem., 49, 760 (2006).CrossRefGoogle Scholar
  63. 63.
    N. Uematsu, A. Fujii, S. Hashiguchi, T. Ikariya, and R. Noyori, J. Am. Chem. Soc., 118, 4916 (1996).CrossRefGoogle Scholar
  64. 64.
    J. Szawkało, S. J. Czarnocki, A. Zawadzka, K. Wojtasiewicz, A. Leniewski, J. K. Maurin, Z. Czarnocki, and J. Drabowicz, Tetrahedron: Asymmetry, 18, 406 (2007).CrossRefGoogle Scholar
  65. 65.
    L. Evanno, J. Ormala and P. M. Pihko, Chem.-Eur. J., 15, 12963 (2009).CrossRefGoogle Scholar
  66. 66.
    F. Wang, H. Liu, L. Cun, J. Zhu, J. Deng, and Y. Jiang, J. Org. Chem., 70, 9424 (2005).CrossRefGoogle Scholar
  67. 67.
    W. A. da Silva, M. T. Rodriguez, N. Shankaraiah, R. B. Ferreira, C. K. Z. Andrade, R. A. Pilli, and L. S. Santos, Org. Lett., 11, 3238 (2009).CrossRefGoogle Scholar
  68. 68.
    A. González-Gómez, G. Domínguez, and J. Pérez-Castells, Tetrahedron, 65, 3378 (2009).CrossRefGoogle Scholar
  69. 69.
    S. Saha, C. V. R. Reddy, and B. Patro, Tetrahedon Lett., 52, 4014 (2011).CrossRefGoogle Scholar
  70. 70.
    R. V. Stevens, Acc. Chem. Res., 10, 193 (1977).CrossRefGoogle Scholar
  71. 71.
    S. Mangalaraj and C. R. Ramanathan, RSC Adv., 2, 12665 (2012).CrossRefGoogle Scholar
  72. 72.
    Review on the Pictet–Spengler reaction: E. D. Cox and J. M. Cook, Chem. Rev., 95, 1797 (1995).Google Scholar
  73. 73.
    Review on the Pictet–Spengler reaction: J. Stöckigt, A. P. Antonchick, F. Wu, and H. Waldmann, Angew. Chem., Int. Ed., 50, 8538 (2011).Google Scholar
  74. 74.
    S. M. Allin, S. N. Gaskell, M. R. J. Elsegood, and W. P. Martin, Tetrahedron Lett., 48, 5669 (2007).CrossRefGoogle Scholar
  75. 75.
    S. M. Allin, C. I. Thomas, J. E. Allard, M. Duncaton, M. R. J. Elsegood, and M. Edgar, Tetrahedron Lett., 44, 2335 (2003).CrossRefGoogle Scholar
  76. 76.
    F. D. King, J. Heterocycl. Chem., 44, 1459 (2007).CrossRefGoogle Scholar
  77. 77.
    D. Ghislieri, A. P. Grenn, M. Pontini, S. C. Willies, I. Rowles, A. Frank, G. Grogan, and N. J. Turner, J. Am. Chem. Soc., 135, 10863 (2013).CrossRefGoogle Scholar
  78. 78.
    G. Cami-Kobeci, P. A. Slatford, M. K. Whittlesey, and J. M. J. Williams, Bioorg. Med. Chem. Lett., 15, 535 (2005).CrossRefGoogle Scholar
  79. 79.
    M. S. Taylor and E. N. Jacobsen, J. Am. Chem. Soc., 126, 10558 (2004).CrossRefGoogle Scholar
  80. 80.
    I. T. Raheem, P. S. Thiara, E. A. Peterson, and E. N. Jacobsen, J. Am. Chem. Soc., 129, 13404 (2007).CrossRefGoogle Scholar
  81. 81.
    W.-H. Chiou, G.-H. Lin, C.-C. Hsu, S. J. Chaterpaul, and I. Ojima, Org. Lett., 11, 2659 (2009).CrossRefGoogle Scholar
  82. 82.
    C. Sanaboina, S. Jana, S. Chidara, B. Patro, G. B. Raolji, and L. Eppakayala, Tetrahedron Lett., 53, 5027 (2012).CrossRefGoogle Scholar
  83. 83.
    J. Seayad, A. M. Seayad, and B. List, J. Am. Chem. Soc., 128, 1086 (2006).CrossRefGoogle Scholar
  84. 84.
    D. Huang, F. Xu, X. Lin, and Y. Wang, Chem.-Eur. J., 18, 3148 (2012).CrossRefGoogle Scholar
  85. 85.
    E. J. Karppanen and A. M. P. Koskinen, Molecules, 15, 6512 (2010).CrossRefGoogle Scholar
  86. 86.
    B. D. Christie and H. Rapoport, J. Org. Chem., 50, 1239 (1985).CrossRefGoogle Scholar
  87. 87.
    O. K. Karjalainen and A. M. P. Koskinen, Org. Biomol. Chem., 10, 4311 (2012).CrossRefGoogle Scholar
  88. 88.
    C. S. Lood and A. M. P. Koskinen, Eur. J. Org. Chem., 2357 (2014).Google Scholar
  89. 89.
    C. Dong, F. Mo, and J. Wang, J. Org. Chem., 73, 1971 (2008).CrossRefGoogle Scholar
  90. 90.
    F. Mo, F. Li, D. Qui, Y. Zhang, and J. Wang, Chin. J. Chem., 30, 2297 (2012).CrossRefGoogle Scholar
  91. 91.
    D. Fokas and J. A. Hamzik, Synlett, 581 (2009).Google Scholar
  92. 92.
    D. Fokas, M. Kaselj, Y. Isome, and Z. Wang, ACS Comb. Sci., 15, 49 (2013).CrossRefGoogle Scholar
  93. 93.
    A. Akdemir, P. Rucktooa, A. Jongejan, R. van Elk, S. Bertrand, T. K. Sixma, D. Bertrand, A. B. Smit, R. Leurs, C. de Graaf, and I. J. P. de Esch, Bioorg. Med. Chem., 19, 6107 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Aalto University School of Chemical TechnologyAaltoFinland

Personalised recommendations