Skip to main content

Advertisement

Log in

Pummerer Reactions of Thiopyran Derivatives as a Method for the Preparation of Trifluoro-Methyl-Substituted Thiolanes with Antiviral Activity

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

2-(p-Tolylsulfanyl)-2-trifluoromethyl-3,6-dihydro-2Н-thiopyran 1-oxides undergo a vinylogous Pummerer reaction upon interaction with trifluoroacetic anhydride, forming 2-(p-tolylsulfanyl)-4-tri-fluoroacetoxy-2-trifluoromethyl-3,4-dihydro-2Н-thiopyrans. The hydrolysis, acetylation, and free radical desulfanylation of these compounds with a subsequent oxidation of the sulfur atom leads to 4-acetoxy-2-trifluoromethyl-3,4-dihydro-2Н-thiopyran 1-oxides. The Pummerer addition reaction of the latter with acetic anhydride and boron trifluoride etherate results in a ring contraction and formation of 3-acet-oxy-2-diacetoxymethyl-5-(trifluoromethyl)thiolanes, which could be converted with sodium boro-hydride to 3-hydroxy-2-hydroxymethyl-5-(trifluoromethyl)thiolanes having antiviral activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. K. S. Feldman, Tetrahedron, 62, 5003 (2006).

    Article  CAS  Google Scholar 

  2. L. H. S. Smith, S. C. Coote, H. F. Sneddon, and D. J. Procter, Angew. Chem., Int. Ed., 49, 5832 (2010).

    Article  CAS  Google Scholar 

  3. F. Santoyo Gonzalez, P. Garcia Mendoza, and F. J. Lopez Apricio, Carbohydr. Res., 183, 227 (1988).

    Article  CAS  Google Scholar 

  4. J. Fujita, H. Matsuda, K. Yamamoto, Y. Morii, M. Hashimoto, T. Okuno, and K. Hashimoto, Tetrahedron, 60, 6829 (2004).

    Article  CAS  Google Scholar 

  5. Y. Watanabe and T. Sakakibara, Tetrahedron, 65, 599 (2009).

    Article  CAS  Google Scholar 

  6. Y. Yoshimura, Y. Yamazaki, Y. Saito, and H. Takahata, Tetrahedron, 65, 9091 (2009).

    Article  CAS  Google Scholar 

  7. S. A. Siry and V. M. Timoshenko, Tetrahedron Lett., 52, 6260 (2011).

    Article  CAS  Google Scholar 

  8. S. A. Siry and V. M. Timoshenko, Tetrahedron Lett., 51, 6406 (2010).

    Article  CAS  Google Scholar 

  9. A. Yu. Sizov, A. N. Kovregin, R. N. Serdyuk, M. V. Vorob'ov, V. A. Porosyatnikov, A. A. Tsvetkov, D. O. Korneev, and A. F. Yermolov, Izv. Akad. Nauk, Ser. Khim., 1156 (2006). [Russ. Chem. Bull., 55, 1200 (2006).]

    Article  CAS  Google Scholar 

  10. V. M. Timoshenko, S. A. Siry, A. B. Rozhenko, and Yu. G. Shermolovich, J. Fluorine Chem., 131, 172 (2010).

    Article  CAS  Google Scholar 

  11. M. Denancé, R. Legay, A.-C. Gaumont, and M. Gulea, Tetrahedron Lett., 49, 4329 (2008).

    Article  Google Scholar 

  12. W. L. Dolbier, Jr., Guide to Fluorine NMR for Organic Chemists, John Wiley & Sons, Hoboken (2009), p. 140.

    Book  Google Scholar 

  13. A. N. Alexeenko and V. P. Nazaretian, J. Fluorine Chem., 69, 241 (1994).

    Article  CAS  Google Scholar 

  14. M. Heras, M. Gulea, S. Masson, and C. Phillouze, Eur. J. Org. Chem., 160 (2004).

  15. Yu. V. Zefirov and P. M. Zorkii, Usp. Khim., 64, 446 (1995).

    Article  CAS  Google Scholar 

  16. E. Juáres, A. García, H. Hommer, M. Salas, and B. Gordillo, Heteroat. Chem., 17, 289 (2006).

    Article  Google Scholar 

  17. N. A. Hughes, K.-M. Kuhajda, and D. A. Miljkovic, Carbohydr. Res., 257, 299 (1994).

    Article  CAS  Google Scholar 

  18. I. Robina, P. Vogel, and Z. Witczak, Curr. Org. Chem., 5, 1177 (2001).

    Article  CAS  Google Scholar 

  19. H. Ikehira and S. Tanimoto, Bull. Chem. Soc. Jpn., 57, 2474 (1984).

    Article  CAS  Google Scholar 

  20. O. Hromatka, D. Binder, and K. Eichinger, Monatsh. Chem., 105, 127 (1974).

    Article  CAS  Google Scholar 

  21. D. Binder, C. R. Noe, K. Baumann, and J. M. F. Wildburger, Arch. Pharm., 318, 243 (1985).

    Article  CAS  Google Scholar 

  22. С. G. Krespan, J. Org. Chem. 27, 3588 (1962).

    Article  CAS  Google Scholar 

  23. T. Abe, S. Nagase, and H. Baba, Bull. Chem. Soc. Jpn., 46, 3845 (1973).

    Article  CAS  Google Scholar 

  24. R. N. Renaud and P. J. Champagne, M. Savard, Can. J. Chem., 57, 2617 (1979).

    Article  CAS  Google Scholar 

  25. W. Dmovski and T. Kozłovski, J. Fluorine Chem., 87, 179 (1998).

    Article  Google Scholar 

  26. F. Neese, ORCA – an ab initio, Density Functional and Semiempirical Program Package, Version 2.7, University of Bonn (2009).

  27. F. Neese, J. Co and mp. Chem., 24, 1740 (2003).

    Article  CAS  Google Scholar 

  28. R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel, Chem. Phys. Lett., 162, 165 (1989).

    Article  CAS  Google Scholar 

  29. A. Schäfer, C. Huber, and R. Ahlrichs, J. Chem. Phys., 100, 5829 (1994).

    Article  Google Scholar 

  30. S. Sinneker, A. Rajendran, A. Klamt, M. Diedenhofen, and F. Neese, J. Phys. Chem. A, 110, 2235 (2006).

    Article  Google Scholar 

  31. D. J. Watkin, C. K. Prout, J. R. Carruthers, and P. W. Betteridge, CRYSTALS, Issue 10, Chemical Crystallography Laboratory, University of Oxford, (1996).

  32. J. R. Carruthers and D. J. Watkin, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., A35, 698 (1979).

    Article  CAS  Google Scholar 

  33. M. V. Berridge, P. M. Herst, and A. S. Tan, Biotechnol. Annu. Rev., 11, 127 (2005).

    Article  CAS  Google Scholar 

  34. S. D. Zagorodnya and N. V. Nesterova, Mikrobiol. Zh., 73, No. 2, 65 (2011).

    CAS  Google Scholar 

  35. A. M. Shcherbinskaya, N. S. Dyachenko, S. L. Rybalko, L. M. Nosach, S. T. Dyadyun, and N. O. Vrinchanu, in: A. V. Stefanov (editor), Preclinical Study of Medicines (Methodical Recommendations) [in Russian], Kiev (2001), p. 371.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Timoshenko.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 513-526, April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siry, S.A., Timoshenko, V.M., Vlasenko, Y.G. et al. Pummerer Reactions of Thiopyran Derivatives as a Method for the Preparation of Trifluoro-Methyl-Substituted Thiolanes with Antiviral Activity. Chem Heterocycl Comp 50, 467–478 (2014). https://doi.org/10.1007/s10593-014-1497-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-014-1497-0

Keywords

Navigation