Chemistry of Heterocyclic Compounds

, Volume 50, Issue 3, pp 415–420 | Cite as

Synthesis and Conformational Analysis of [3-(6-Chloropyridazin-3-yl)-3,4-Dihydropyridazino[4,5-b]Quinoxalin-2(1Н)-yl](Phenyl)Methanone

  • A. I. Karkhut
  • K. B. Bolibrukh
  • S. V. Polovkovych
  • O. Khoumeri
  • O. S. Solovyov
  • T. Terme
  • P. Vanelle
  • V. P. Novikov

[3-(6-Chloropyridazin-3-yl)-3,4-dihydropyridazino[4,5-b]quinoxalin-2(1H)-yl](phenyl)methanone has been synthesized and its two stable forms were isolated. For the establishment of their structures, B3LYP geometry and energy and GIAO/B3LYP NMR calculations of possible conformers using the polarizable continuum model were performed. The differences in calculated spectra allow attributing calculated structures and obtained substances by their 1H and 13C NMR. The conformer ratio correlates with their calculated Gibbs energies.


cyclic hydrazine quinoxaline conformational analysis density functional theory GIAO 1H NMR calculation 


The authors express their deep gratitude to the SSI "Institute for Single Crystals" of National Academy of Sciences of Ukraine for software and computational facilities.


  1. 1.
    V. K. Tandon, D. B. Yadav, H. K. Maurya, A. K. Chaturvedi, and P. K. Shukla, Bioorg. Med. Chem., 14, 6120 (2006).CrossRefGoogle Scholar
  2. 2.
    W. Raether and H. Hanel, J. Parasitol. Res., 90, 19 (2003).Google Scholar
  3. 3.
    H. Xu and L.-l. Fan, Eur. J. Med. Chem., 46, 1919 (2011).CrossRefGoogle Scholar
  4. 4.
    M. N. Noolvi, H. M. Patel, V. Bhardwaj, and A. Chauhan, Eur. J. Med. Chem., 46, 2327 (2011).CrossRefGoogle Scholar
  5. 5.
    A. Jaso, B. Zarranz, I. Aldana, and A. Monge, Eur. J. Med. Chem., 38, 791 (2003).CrossRefGoogle Scholar
  6. 6.
    C. Barea, A. Pabón, D. Castillo, M. Zimic, M. Quiliano, S. Galiano, S. Pérez-Silanes, A. Monge, E. Deharo, and I. Aldana, Bioorg. Med. Chem. Lett., 21, 4498 (2011).CrossRefGoogle Scholar
  7. 7.
    M. M. Ali, M. M. F. Ismail, M. S. A. El-Gaby, M. A. Zahran, and Y. A. Ammar, Molecules, 5, 864 (2000).CrossRefGoogle Scholar
  8. 8.
    U. J. Ries, H. W. Priekpe, N. H. Havel, S. Handschuh, G. Mihm, J. M. Stassen, W. Wienen, and H. Nar, Bioorg. Med. Chem. Lett., 13, 2297 (2003).CrossRefGoogle Scholar
  9. 9.
    T. P. Selby, L. R. Denes, J. J. Kilama, and K. S. Ben, Synth. Chem. Agrochem. IV, 16, 171 (1995).CrossRefGoogle Scholar
  10. 10.
    J.-B. Kim, G.-S. Lee, Y.-B. Kim, S.-K. Kim, and Y. H. Kim, Int. J. Antimicrob. Agents, 24, 613 (2004).CrossRefGoogle Scholar
  11. 11.
    M. V. Volkenshtein (editor), Structure and Stability of Biological Macromolecules, [In Russian], Mir, Moscow (1973), p. 584.Google Scholar
  12. 12.
    K. Wang, T. Miao and Y. Liu, Comput. Theor. Chem., 972, 39 (2011).CrossRefGoogle Scholar
  13. 13.
    M. Scognamiglio, F. Temussi, B. D'Abrosca, and A. Fiorentino, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 116, 651 (2013).CrossRefGoogle Scholar
  14. 14.
    M. Muzomwe, B. Boeckx, G. Maes, and O. E. Kasende, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 108, 14 (2013).CrossRefGoogle Scholar
  15. 15.
    M. Horwath and V. Benin, J. Mol. Struct: THEOCHEM, 850, 105 (2008).CrossRefGoogle Scholar
  16. 16.
    R. Jain, T. Bally, and P. R. Rablen, J. Org. Chem., 74, 4017 (2009).CrossRefGoogle Scholar
  17. 17.
    T. Bally and P. R. Rablen, J. Org. Chem., 76, 4818 (2011).CrossRefGoogle Scholar
  18. 18.
    P. H. Willoughby, M. J. Jansma, and T. R. Hoye, Nat. Protoc., 9, 643 (2014).CrossRefGoogle Scholar
  19. 19.
    K. W. Wiitala, Z. F. Al-Rashid, V. Dvornikovs, T. R. Hoye, and C. J. Cramer, J. Phys. Org. Chem., 20, 345 (2007).CrossRefGoogle Scholar
  20. 20.
    T. Toya, K. Yamaguchi, and Y. Endo, Bioorg. Med. Chem., 10, 953 (2002).CrossRefGoogle Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision B.01, Gaussian Inc., Wallingford (2009).Google Scholar
  22. 22.
    F. Weinhold and J. E. Carpenter, in: Z. Vager (editors), The Structure of Small Molecules and Ions, R. Naaman, Plenum, New York (1988), 227.CrossRefGoogle Scholar
  23. 23.
    J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev., 105, 2999 (2005).CrossRefGoogle Scholar
  24. 24.
    J. Pohmer, M. V. Lakshmikantham, and M. P. Cava, J. Org. Chem., 60, 8283 (1995).CrossRefGoogle Scholar
  25. 25.
    X.-Y. Sun, C. Hu, X.-Q. Deng, C.-X. Wei, Z.-G. Sun, and Z.-S. Quan, Eur. J. Med. Chem., 45, 4807 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. I. Karkhut
    • 1
  • K. B. Bolibrukh
    • 1
  • S. V. Polovkovych
    • 1
  • O. Khoumeri
    • 2
  • O. S. Solovyov
    • 3
  • T. Terme
    • 2
  • P. Vanelle
    • 2
  • V. P. Novikov
    • 1
  1. 1.National University “Lviv Polytechnic”LvivUkraine
  2. 2.Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire ICR, UMR 7273Marseille Cedex 05France
  3. 3.Shupyk National Medical Academy of Postgraduate EducationKyivUkraine

Personalised recommendations