Skip to main content
Log in

Theoretical Study of One-Electron Reduction And Oxidation Potentials of N-Heterocyclic Compounds

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Computational protocols that successfully predict standard reduction potentials of N-heterocyclic compounds in dimethyl formamide and their standard oxidation potentials in acetonitrile were developed. Different solvation models were verified in conjunction with the MPWB1K/6-31 + G(d) level of density functional theory. For reduction potentials calculations, the PCM(UA0) and SMD(Bondi) models were used to compute solvation energies of neutral forms and anion-radical forms, respectively. For oxidation potential calculations, the best results were obtained by a combination of SMD(UAHF) and PCM(Bondi) models to compute solvation energies of neutral forms and cation-radical forms, respectively. The mean absolute deviations (MAD) and root mean square errors (RMSE) of the current theoretical models for reduction potentials were found to be 0.09 V and 0.10, respectively, and for oxidation potentials MAD = 0.12 V and RMSE = 0.16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R. J. Ono, Y. Suzuki, D. M. Khramov, M. Ueda, J. L. Sessler, and C. W. Bielawski, J. Org. Chem., 76, 3239 (2011).

    Article  CAS  Google Scholar 

  2. D. Izuhara and T. M. Swager, J. Mater. Chem., 21, 3579 (2011).

    Article  CAS  Google Scholar 

  3. D. Kim, F. F. Kadlubar, C. H. Teitel, and F. P. Guengerich, Chem. Res. Toxicol., 17, 529 (2004).

    Article  CAS  Google Scholar 

  4. L. Sviatenko, O. Isayev, L. Gorb, F. Hill, and J. Leszczynski, J. Comput. Chem., 32, 2195 (2011).

    Article  CAS  Google Scholar 

  5. L. K. Sviatenko, L. Gorb, F. C. Hill, and J. Leszczynski, J. Comput. Chem., 34, 1094 (2013).

    Article  CAS  Google Scholar 

  6. B. Ginovska, D. M. Camaioni, M. Dupuis, and C. A. Schwerdtfeger, Q. Gil, J. Phys. Chem. A, 112, 10604 (2008).

    Article  CAS  Google Scholar 

  7. V. Verdolino, R. Cammi, B. H. Munk, and H. B. Schlegel, J. Phys. Chem. B, 112, 16860 (2008).

    Article  CAS  Google Scholar 

  8. A. L. Lewis, J. A. Bumpus, D. G. Truhlar, and C. J. Cramer, J. Chem. Ed., 81, 596 (2004).

    Article  CAS  Google Scholar 

  9. K. Kelly, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem., 111, 408 (2007).

    Article  CAS  Google Scholar 

  10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr., J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford (2009).

    Google Scholar 

  11. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 108, 6908 (2004).

    Article  CAS  Google Scholar 

  12. Y. Zhao, N. Gonzalez-Garcia, and D. G. Truhlar, J. Phys. Chem. A, 109, 2012 (2005).

    Article  CAS  Google Scholar 

  13. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput., 2, 364 (2006).

    Article  Google Scholar 

  14. E. Cances, B. Mennucci, and J. Tomasi, J. Chem. Phys., 107, 3032 (1997).

    Article  CAS  Google Scholar 

  15. B. Mennucci and J. Tomasi, J. Chem. Phys., 106, 5151 (1997).

    Article  CAS  Google Scholar 

  16. M. Cossi, V. Barone, B. Mennucci, and J. Tomasi, Chem. Phys. Lett., 286, 253 (1998).

    Article  CAS  Google Scholar 

  17. A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Chem. Phys. B, 113, 6378 (2009).

    Article  CAS  Google Scholar 

  18. B. T. Psciuk and H. B. Schlegel, J. Phys. Chem. B, 117, 9518 (2013).

    Article  CAS  Google Scholar 

  19. NIST Chemistry WebBook. NIST Standard Reference Database, No. 69 (2005). http://webbook.nist.gov/chemistry/.

  20. G. W. Dillow and P. Kebarle, Can. J. Chem., 67, 1628 (1989).

    Article  CAS  Google Scholar 

  21. P. Wardman, J. Phys. Chem. Ref. Data, 18, 1637 (1989).

    Article  CAS  Google Scholar 

  22. L. L. Miller, G. D. Nordblom, and E. A. Mayeda, J. Org. Chem., 37, 916 (1972).

    Article  CAS  Google Scholar 

  23. L. Marcoux, R. N. Adams, J. Electroanal. Chem. Interfacial Electrochem., 49, 111 (1974).

    Article  CAS  Google Scholar 

  24. A. Alberti, P. Carloni, L. Eberson, L. Greci, and P. Stipa, J. Chem. Soc., Perkin Trans. 2, 887 (1997).

    Article  Google Scholar 

  25. A. Alberti, P. Astolfi, D. Döpp, L. Greci, D. Macciantelli, and R. Petrucci, New J. Chem., 27, 1045 (2003).

    Article  CAS  Google Scholar 

  26. C. Berti, L. Greci, R. Andruzzi, and A. Trazza, J. Org. Chem., 47, 4895 (1982).

    Article  CAS  Google Scholar 

  27. S. F. Nelsen and R. Fibiger, J. Am. Chem. Soc., 94, 8497 (1972).

    Article  CAS  Google Scholar 

  28. J. W. Loveland and G. R. Dimeler, Anal. Chem., 33, 1196 (1961).

    Article  CAS  Google Scholar 

  29. C. P. Andrieux, P. Hapiot, P. Audebert, L. Guyard, M. N. D. An, L. Groenendaal, and E. W. Meijer, Chem. Mater., 9, 723 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leszczynski.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 341-348, 2014.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sviatenko, L.K., Gorb, L., Hill, F.C. et al. Theoretical Study of One-Electron Reduction And Oxidation Potentials of N-Heterocyclic Compounds. Chem Heterocycl Comp 50, 311–318 (2014). https://doi.org/10.1007/s10593-014-1484-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-014-1484-5

Keywords

Navigation