Advertisement

Chemistry of Heterocyclic Compounds

, Volume 49, Issue 12, pp 1831–1833 | Cite as

Synthesis of 2-(N-Benzoylimino)-N-(9,10-Dioxo-9,10-Dihydroanthracen-1-yl)Thiazoles

  • M. V. Stasevych
  • V. I. Zvarych
  • O. V. Stan’ko
  • M. V. Vovk
  • V. P. Novikov
Article

N-Aroylthioureas hold a significant promise for the synthesis of such heterocycles as imidazolidine-2-thiones [1, 2], 2-aroyliminothiazolines [3, 4, 5], 1,2,4-triazoles [6], 1,3-thiazines [7], and indeno[1,2-d]-[1, 3]thiazepines [8]. Of particular interest are 2-iminothiazolines, which are characterized by a wide range of biological properties [9, 10, 11]. For example, the thiazol-2-imine fragment is a structural fragment in muscarinic agonists, as well as antifungal, hypolipidemic, antidiabetic, anti-inflammatory, analgesic, and anti-shistosomiasis compounds [5]. Thiazoline derivatives are also used as insecticides and plant growth regulators [5].

The reaction of N,N'-disubstituted thioureas with α-bromo ketones has been described in the literature [5, 12], and it provides access to various N-substituted 2-iminothiazoles. However, 2-iminothiazoles with 9,10-dioxo-9,10-dihydroanthracenyl substituents at position 3 of the heterocycle remain hitherto unknown. The pronounced biological...

Keywords

9,10-anthraquinone anthracenylbenzoyliminothiazoles N-benzoylthioureas α-bromoacetone 

References

  1. 1.
    J. Hartung, K. Rosenbaum, L. Beyer, and V. J. Fernandes, J. Prakt. Chem., 333, 537 (1991).CrossRefGoogle Scholar
  2. 2.
    R.-S. Zeng, J.-P. Zou, S.-J. Zhi, J. Chen, and Q. Shen, Org. Lett., 5, 1657 (2003).CrossRefGoogle Scholar
  3. 3.
    A. Manaka, T. Ishii, and K. Takahashi, Tetrahedron Lett., 46, 419 (2005).CrossRefGoogle Scholar
  4. 4.
    X. Wang, F. Wang, Z. Quan, Z. Zhang, and M. Wang, Synth. Commun., 36, 2453 (2006).CrossRefGoogle Scholar
  5. 5.
    S. Murru, C.B. Singh, V. Kalava, and B. K. Patel, Tetrahedron, 64, 1931 (2008).CrossRefGoogle Scholar
  6. 6.
    M. Kodomari, M. Suzuki, and K. Tanigawa, Tetrahedron Lett., 46, 5841 (2005).CrossRefGoogle Scholar
  7. 7.
    A. A. Aly, E. K. Ahmed, and K. M. El-Mokadam, J. Heterocycl. Chem., 44, 1431 (2007).CrossRefGoogle Scholar
  8. 8.
    A. A. Aly, A. B. Brown, M. Ramadan, M. Abdel-Aziz, G. Abuo-Rahma, M. F. Radwan, and A. M. Gamal-Eldeen, J. Heterocycl. Chem., 47, 503 (2010).Google Scholar
  9. 9.
    G. Wu, X.-L. Qui, L. Zhou, J. Zhu, J. Lau, P.-L. Chen, and W.-H. Lee, Cancer Res., 68, 8393 (2008).CrossRefGoogle Scholar
  10. 10.
    M. Tomizawa, S. Kagabu, I. Ohno, and K. A. Durkin, J. Med. Chem., 51, 4213 (2008).CrossRefGoogle Scholar
  11. 11.
    N. Zhang, M. Tomizawa, and J. E. Casida, J. Med. Chem., 45, 2832 (2002).CrossRefGoogle Scholar
  12. 12.
    C. B. Singh, S. Murru, V. Kavala, and B. K. Patel, Org. Lett., 8, 5397 (2006).CrossRefGoogle Scholar
  13. 13.
    J. W. Lown, Anthracycline and Anthracenedione-Based Anticancer Agents, Elsevier, Amsterdam (1988).Google Scholar
  14. 14.
    L. Delmulle and K. Demeyer, Anthraquinones in Plants: Source, Safety and Applications in Gastrointestinal Health, Nottingham University Press (2010).Google Scholar
  15. 15.
    V. Ya. Fain, 9,10-Anthraquinones and Their Application [in Russian], Photochemistry Center, Russian Academy of Sciences, Moscow (1999).Google Scholar
  16. 16.
    M. Stasevych, V. Zvarych, R. Musyanovych, M. Vovk, and V. Novikov, in 5th International Symposium ''Methods and Application of Computational Chemistry МАСС-5'', Kharkov, Ukraine (2013), р. 106.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. V. Stasevych
    • 1
  • V. I. Zvarych
    • 1
  • O. V. Stan’ko
    • 1
  • M. V. Vovk
    • 2
  • V. P. Novikov
    • 1
  1. 1.Lviv’ska Polytechnica National UniversityLvivUkraine
  2. 2.Institute of Organic ChemistryNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations