Advertisement

Chemistry of Heterocyclic Compounds

, Volume 49, Issue 12, pp 1757–1769 | Cite as

Preparation of 6-Unsubstituted 3,4-Dihydropyrimidin-2(1H)-Ones and 2-(Arylamino)Pyrimidines

  • S. Terentjeva
  • D. Muceniece
  • V. LusisEmail author
Article

The Biginelli reaction of methyl propiolate and of methyl 3-diethylaminoacrylate has yielded a novel series of 6-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones. The successie oxidation of the pyrimidine ring, chlorination of the 2-oxo group, and substitution of the chlorine atom by an aromatic amine give previously unknown 2-(arylamino)pyrimidines. 2-Oxo- and 2-(arylamino)pyrimidine-5-carboxylic acids have been obtained.

Keywords

2-(arylamino)pyrimidines 2-chloropyrimidines 2-oxo-1,2-dihydropyrimidines 2-oxo-1,2,3,4-tetrahydropyrimidines Biginelli reaction 

Notes

This work was carried out with the financial support of the European Fund for Regional Development (No. 2DP/2.1.1.1.0/10/APIA/VIAA/065.

The authors thank S. Belyakov for carrying out the X-ray structural analysis.

References

  1. 1.
    S. Suresh and J. S. Sandhu, ARKIVOC, i, 66 (2012).Google Scholar
  2. 2.
    J.-P. Wan and Y. Liu, Synthesis, 3943 (2010).Google Scholar
  3. 3.
    C. O. Kappe, Acc. Chem. Res., 33, 879 (2000).CrossRefGoogle Scholar
  4. 4.
    C. O. Kappe, Tetrahedron, 49, 6937 (1993).CrossRefGoogle Scholar
  5. 5.
    J.-P. Wan and Y.-J. Pan, Chem. Commun., 2768 (2009).Google Scholar
  6. 6.
    S. I. Filimonov, Z. V. Chirikova, I. G. Abramov, S. I. Firgang, G. A. Stashina, and K. Y. Suponitsky, Mendeleev Commun., 21, 46 (2011).CrossRefGoogle Scholar
  7. 7.
    E. S. Darwish, I. A. Abdelhamid, M. A. Nasra, F. M. Abdel-Gallil, and D. H. Fleita, Helv. Chim. Acta, 93, 1204 (2010).CrossRefGoogle Scholar
  8. 8.
    K. F. Byth, J. D. Culshaw, S. Green, S. E. Oakes, and A. P. Thomas, Bioorg. Med. Сhem. Lett., 14, 2245 (2004).CrossRefGoogle Scholar
  9. 9.
    E. J. Breaux and K. E. Zwikelmaier, J. Heterocycl. Chem., 18, 183 (1981).CrossRefGoogle Scholar
  10. 10.
    É. É. Liepin’sh, E. L. Khanina, and G. Ya. Dubur, Khim. Geterotsikl. Soedin., 524 (1981). [Chem. Heterocycl. Comp., 17. 381 (1981)].Google Scholar
  11. 11.
    E. L. Khanina, D. Kh. Mutsenietse, and G. Ya. Dubur, Khim. Geterotsikl. Soedin., 529 (1984). [Chem. Heterocycl. Comp., 20, 431 (1984)].Google Scholar
  12. 12.
    H. Gruza, S. Mirek, A. Jezewski, and A. Wrzosek, WO Pat. Appl. 2010014022.Google Scholar
  13. 13.
    P. Shanmugam and P. T. Perumal, Tetrahedron, 63, 666 (2007).CrossRefGoogle Scholar
  14. 14.
    A. A. Bakibaev and V. D. Filimonov, Zh. Org. Khim., 27, 854 (1991).Google Scholar
  15. 15.
    P. Shanmugam and P. T. Perumal, Tetrahedron, 62, 9726 (2006).CrossRefGoogle Scholar
  16. 16.
    K. Yamamoto, Y. G. Chen, and F. G. Buono, Org. Lett., 7, 4673 (2005).CrossRefGoogle Scholar
  17. 17.
    S. S. Kim, B. S. Choi, J. H. Lee, T. K. Lee, T. H. Lee, Y. H. Kim, and H. Shin, Synlett, 599 (2009).Google Scholar
  18. 18.
    H. М. Karade, J. Acharya, and M. P. Kaushik, Tetrahedron Lett., 53, 5541 (2012).CrossRefGoogle Scholar
  19. 19.
    K. Okunaga, Y. Nomura, K. Kawamura, N. Nakamichi, K. Eda, and M. Hayashi, Heterocycles, 76, 715 (2008).CrossRefGoogle Scholar
  20. 20.
    H. R. Memarain and M. Ranjbar, J. Mol. Catal. A: Chem., 356, 46 (2012).CrossRefGoogle Scholar
  21. 21.
    N. N. Karade, S. V. Gampawar, J. M. Kondre, and G. B. Tiwari, Tetrahedron Lett., 49, 6698 (2008).CrossRefGoogle Scholar
  22. 22.
    B. Han, R.-F. Han, Y.-W. Ren, X.-Y. Duan, Y.-C. Xu, and W. Zhang, Tetrahedron, 67, 5615 (2011).CrossRefGoogle Scholar
  23. 23.
    J. J. Vanden Eynde, N. Labuche, Y. Van Heverbeke, and L. Tietze, ARKIVOC, xv, 22 (2003).Google Scholar
  24. 24.
    J. J. Vanden Eynde, J. J. Audiart, V. Canonne, S. Michel, Y. Van Haverbeke, and C. O. Kappe, Heterocycles, 45, 1967 (1997).CrossRefGoogle Scholar
  25. 25.
    A. Puchala, F. Belaj, J. Bergman, and C. O. Kappe, J. Heterocycl. Chem., 38, 1345 (2001).CrossRefGoogle Scholar
  26. 26.
    C. O. Kappe and U. G. Wagner, Heterocycles, 29, 761 (1989).CrossRefGoogle Scholar
  27. 27.
    K. Singh, K. Singh, B. Wan, S. Franzblau, K. Chibale, and J. Balzarini, Eur. J. Med. Chem., 46, 2290 (2011).CrossRefGoogle Scholar
  28. 28.
    K. Singh, H. Kaur, K. Chibale, J. Balzarini, S. Little, and P. V. Bharatam, Eur. J. Med. Chem., 52, 82 (2012).CrossRefGoogle Scholar
  29. 29.
    B. Takahashi, K. Ohta, E. Kawachi, H. Fukasawa, Y. Hashimoto, and H. Kagechika, J. Med. Chem., 45, 3327 (2002).CrossRefGoogle Scholar
  30. 30.
    Y. S. Cho, M. Borland, C. Brain, C. H.-T. Chen, H. Cheng, R. Chopra, K. Chung, J. Groarke, G. He, Y. Hou, S. Kim, S. Kovats, Y. Lu, M. O’Reilly, J. Shen, T. Smith, G. Trakshel, M. Vögtle, M. Xu, M. Xu, and M. J. Sung, J. Med. Chem., 53, 7938 (2010).CrossRefGoogle Scholar
  31. 31.
    H. Liu, W. Xia, Y. Luo, and W. Lu, Monatsh. Chem., 141, 907 (2010).CrossRefGoogle Scholar
  32. 32.
    Z.-J. Quan, Y. Lv, Z.-J. Wang, Z. Zhang, Y.-X. Da, and X.-C. Wang, Tetrahedron Lett., 54, 1884 (2013).CrossRefGoogle Scholar
  33. 33.
    D. H. Boschelli, Z. Wu, S. R. Klutchko, H. D. Hollis Showalter, J. M. Hamby, G. H. Lu, T. C. Major, T. K. Dahring, B. Batley, R. L. Panek, J. Keiser, B. G. Hartl, A. J. Kraker, W. D. Klohs, B. J. Roberts, S. Patmore, W. L. Elliot, R. Steinkampf, L. A. Bradford, H. Hallak, and A. M. Doherty, J. Med. Chem., 41, 4365 (1998).CrossRefGoogle Scholar
  34. 34.
    J. Spychala, Synth. Commun., 27, 1943 (1997).CrossRefGoogle Scholar
  35. 35.
    W. E.Truce and D. G. Brady, J. Org. Chem., 31, 3543 (1966).CrossRefGoogle Scholar
  36. 36.
    A. Arfan, L. Paquin, and I. P. Bazureau, Zh. Org. Khim., 43, 1063 (2007). [Russ. J. Org. Chem., 43, 1058 (2007)].Google Scholar
  37. 37.
    T. G. Steele, C. A. Coburn, M. A. Patane, and M. G. Bock, Tetrahedron Lett., 39, 9315 (1998).CrossRefGoogle Scholar
  38. 38.
    A. Altomare, M. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, and R. Spagna, J. Appl. Cryst., 32, 115 (1999).CrossRefGoogle Scholar
  39. 39.
    S. Mackay, W. Dong, C. Edwards, A. Henderson, C. J. Gilmore, N. Stewart, K. Shankland, and A. Donald, maXus, Integrated Crystallography Software, Bruker-Nonius and University of Glasgow (2003).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Latvian Institute of Organic SynthesisRigaLatvia

Personalised recommendations