Advertisement

Chemistry of Heterocyclic Compounds

, Volume 49, Issue 11, pp 1560–1578 | Cite as

Synthesis of Macromonocyclic Hydroxamic Acids* (Review)

  • D. Borovika
  • P. Bertrand
  • P. TrapencierisEmail author
Article

Literature methods for the synthesis of macromonocyclic hydroxamic acids are reviewed, covering the period of the last 45 years.

Keywords

cyclic hydroxamic acids macro-membered N-heterocycles cyclization 

Notes

This study was supported by The Latvian National Research Programme 2010-2013 “BIOMEDICINE” and COST Action TD0905.

References

  1. 1.
    P. Trapencieris, J. Strazdina, and P. Bertrand, Khim. Geterotsikl. Soedin., 899 (2012). [Chem. Heterocycl. Compd., 48, 833 (2012).]Google Scholar
  2. 2.
    M. Katkevics, T. Kukosha, and E. Lukevics, in: Z. Rappoport and J. F. Liebman (editors), The Сhemistry of Hydroxylamines, Oximes and Hydroxamic Acids, Vol. 2, Pt 1, Wiley (2011), p. 205.Google Scholar
  3. 3.
    M. J. Miller and F. Malouin, Acc. Chem. Res., 26, 241 (1993). CrossRefGoogle Scholar
  4. 4.
    S. Dhungana, M. J. Miller, L. Dong, C. Ratledge, and A. L. Crumbliss, J. Am. Chem. Soc., 125, 7654 (2003).CrossRefGoogle Scholar
  5. 5.
    R. E. Juárez-Hernández, S. G. Franzblau, and M. J. Miller, Org. Biomol. Chem., 10, 7584 (2012).CrossRefGoogle Scholar
  6. 6.
    P. J. Maurer and M. J. Miller, J. Org. Chem., 46, 2835 (1981).CrossRefGoogle Scholar
  7. 7.
    L. J. Wilson, B. Wang, S.-M. Yang, R. H. Scannevin, S. L. Burke, P. Karnachi, K. J. Rhodes, and W. V. Murray, Bioorg. Med. Chem. Lett., 21, 6485 (2011).CrossRefGoogle Scholar
  8. 8.
    C. Wu, P. A. Miller, and M. J. Miller, Bioorg. Med. Chem. Lett., 21, 2611 (2011).CrossRefGoogle Scholar
  9. 9.
    K. J. Hale, L. Lazarides, and J. Cai, Org. Lett., 3, 2927 (2001).CrossRefGoogle Scholar
  10. 10.
    R. J. Bergeron, J. S. McManis, P. T. Perumal, and S. E. Algee, J. Org. Chem., 56, 5560 (1991).CrossRefGoogle Scholar
  11. 11.
    A. Drouin, D. K. Winter, S. Pichette, S. Aubert-Nicol, J. Lessard, and C. Spino, J. Org. Chem., 76, 164 (2011).CrossRefGoogle Scholar
  12. 12.
    A. Porcheddu and G. Giacomelli, J. Org. Chem., 71, 7057 (2006).CrossRefGoogle Scholar
  13. 13.
    R. Banerjee and S. B. King, Org. Lett., 11, 4580 (2009).CrossRefGoogle Scholar
  14. 14.
    P. W. K. Flanagan, H. W. Amburn, H. W. Stone, J. G. Traynham, and H. Shechter, J. Am. Chem. Soc., 91, 2797 (1969).CrossRefGoogle Scholar
  15. 15.
    K. Yamada, K. Kishikawa, and M. Yamamoto, J. Org. Chem., 52, 2327 (1987).CrossRefGoogle Scholar
  16. 16.
    K. Yamada, S. Tanaka, K. Naruchi, and M. Yamamoto, J. Org. Chem., 47, 5283 (1982).CrossRefGoogle Scholar
  17. 17.
    F. G. Bordwell and K. C. Yee, J. Am. Chem. Soc., 92, 5939 (1970).CrossRefGoogle Scholar
  18. 18.
    S.-M. Yang, B. Lagu, and L. J. Wilson, J. Org. Chem., 72, 8123 (2007).CrossRefGoogle Scholar
  19. 19.
    J. Hu and M. J. Miller, J. Am. Chem. Soc., 119, 3462 (1997).CrossRefGoogle Scholar
  20. 20.
    A. J. Walz, U. Möllmann, and M. J. Miller, Org. Biomol. Chem., 5, 1621 (2007).CrossRefGoogle Scholar
  21. 21.
    A. J. Walz and M. J. Miller, Org. Lett., 4, 2047 (2002).CrossRefGoogle Scholar
  22. 22.
    A. J. Walz and M. J. Miller, Tetrahedron Lett., 48, 5103 (2007).CrossRefGoogle Scholar
  23. 23.
    A. R. Poreddy, O. F. Schall, G. R. Marshall, C. Ratledge, and U. Slomczynska, Bioorg. Med. Chem. Lett., 13, 2553 (2003).CrossRefGoogle Scholar
  24. 24.
    J. Hu and M. J. Miller, Tetrahedron Lett., 36, 6379 (1995).CrossRefGoogle Scholar
  25. 25.
    P. J. Maurer and M. J. Miller, J. Am. Chem. Soc., 105, 240 (1983).CrossRefGoogle Scholar
  26. 26.
    K. Griesbaum, X. Liu, and Y. Dong, Tetrahedron, 53, 5463 (1997).CrossRefGoogle Scholar
  27. 27.
    V. F. Rudchenko, V. G. Shtamburg, A. P. Pleshkova, and R. G. Kostyanovsky, Russ. Chem. Bull., 30, 825 (1981).CrossRefGoogle Scholar
  28. 28.
    E. Vedejs and H. Sano, Tetrahedron Letters, 33, 3261 (1992).CrossRefGoogle Scholar
  29. 29.
    M. R. Iesce, F. Cermola, A. Guitto, F. Giordano, and R. Scarpati, J. Org. Chem., 61, 8677 (1996).CrossRefGoogle Scholar
  30. 30.
    Y.-M. Zhang, X. Fan, S.-M. Yang, R. H. Scannevin, S. L. Burke, K. J. Rhodes, and P. F. Jackson, Bioorg. Med. Chem. Lett., 18, 405 (2008).CrossRefGoogle Scholar
  31. 31.
    D. St. C. Black, R. F. C. Brown, and A. M. Wade, Aust. J. Chem., 25, 2429 (1972).Google Scholar
  32. 32.
    Z. Shi, C. Grohmann and F. Glorius, Angew. Chem., Int. Ed., 52, 5393 (2013).CrossRefGoogle Scholar
  33. 33.
    D. Chaiyaveij, L. Cleary, A. S. Batsanov, T. B. Marder, K. J. Shea, and A. Whiting, Org. Lett., 13, 3442 (2011).CrossRefGoogle Scholar
  34. 34.
    S. M. Sparks, J. D. Vargas, and K. J. Shea, Org. Lett., 2, 1473 (2000).CrossRefGoogle Scholar
  35. 35.
    C. P. Chow, K. J. Shea, and S. M. Sparks, Org. Lett., 4, 2637 (2002).CrossRefGoogle Scholar
  36. 36.
    C. P. Chow and K. J. Shea, J. Am. Chem. Soc., 127, 3678 (2005).CrossRefGoogle Scholar
  37. 37.
    S. M. Sparks, C. P. Chow, L. Zhu, and K. J. Shea, J. Org. Chem., 69, 3025 (2004).CrossRefGoogle Scholar
  38. 38.
    B. M. Trost and M. K. Ameriks, Org. Lett., 6, 1745 (2004).CrossRefGoogle Scholar
  39. 39.
    E. Miyazawa, T. Sakamoto, and Y. Kikugawa, Heterocycles, 59, 149 (2003).CrossRefGoogle Scholar
  40. 40.
    N. Kongprakaiwoot, B. C. Noll, and S. N. Brown, Inorg. Chem., 47, 11902 (2008).CrossRefGoogle Scholar
  41. 41.
    K. Shirokane, Y. Kurosaki, T. Sato, and N. Chida, Angew. Chem., Int. Ed., 49, 6369 (2010).CrossRefGoogle Scholar
  42. 42.
    Y. Liu, H. K. Jacobs, and A. S. Gopalan, J. Org. Chem., 74, 782 (2009).CrossRefGoogle Scholar
  43. 43.
    C.-B. Xue, M. E. Voss, D. J. Nelson, J. J.-W. Duan, R. J. Cherney, I. C. Jacobson, X. He, J. Roderick, L. Chen, R. L. Corbett, L. Wang, D. T. Meyer, K. Kennedy, W. F. DeGrado, K. D. Hardman, C. A. Teleha, B. D. Jaffee, R.-Q. Liu, R. A. Copeland, M. B. Covington, D. D. Christ, J. M. Trzaskos, R. C. Newton, R. L. Magolda, R. R. Wexler, and C. P. Decicco, J. Med. Chem., 44, 2636 (2001).CrossRefGoogle Scholar
  44. 44.
    M. Gaspar, R. Grazina, A. Bodor, E. Farkas, and M. A. Santos, J. Chem. Soc., Dalton Trans., 799 (1999).Google Scholar
  45. 45.
    P. Huber, H. Leuenberger, and W. Keller-Schierlein, Helv. Chim. Acta, 69, 236 (1986).CrossRefGoogle Scholar
  46. 46.
    W. Keller-Schierlein, L. Hagmann, H. Zähner, and W. Hunn, Helv. Chim. Acta, 71, 1528 (1988).CrossRefGoogle Scholar
  47. 47.
    P. L. Durette, F. Baker, P. L. Barker, J. Boger, S. S. Bondy, M. L. Hammond, T. J. Lanza, A. A. Pessolano, and C. G. Caldwell, Tetrahedron Lett., 31, 1237 (1990).CrossRefGoogle Scholar
  48. 48.
    I. E. Kopka, Tetrahedron Lett., 31, 4711 (1990).CrossRefGoogle Scholar
  49. 49.
    R. J. Bergeron and J. S. McManis, Tetrahedron, 45, 4939 (1989).CrossRefGoogle Scholar
  50. 50.
    Y. Sun and A. E. Martell, J. Am. Chem. Soc., 111, 8023 (1989).CrossRefGoogle Scholar
  51. 51.
    Y. Sun and A. E. Martell, Tetrahedron, 46, 2725 (1990).CrossRefGoogle Scholar
  52. 52.
    Y. Sun, A. E. Martell, and R. J. Motekaitis, Inorg. Chem., 24, 4343 (1985).CrossRefGoogle Scholar
  53. 53.
    B. Dietrich, J. M. Lehn, J. P. Sauvage, and J. Blanzat, Tetrahedron, 29, 1629 (1973).CrossRefGoogle Scholar
  54. 54.
    T. Kolasa and A. Chimiak, Tetrahedron, 30, 3591 (1974).CrossRefGoogle Scholar
  55. 55.
    J. R. Heemstra, Jr., C. T. Walsh, and E. S. Sattely, J. Am. Chem. Soc., 131, 15317 (2009).CrossRefGoogle Scholar
  56. 56.
    K. Shimizu and M. Akiyama, J. Chem. Soc., Chem. Commun., 183 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Latvian Institute of Organic SynthesisRigaLatvia
  2. 2.University of Poitiers, Laboratoire Synthèse et Réactivité des Substances Naturelles, UMR CNRS 6514Poitiers CedexFrance

Personalised recommendations