Chemistry of Heterocyclic Compounds

, Volume 49, Issue 9, pp 1370–1373 | Cite as

Silica-Supported Sodium Hydrogen Sulfate Catalyzed Synthesis of 13-Aryl-12H-Dibenzo[b,i]-Xanthene-5,7,12,14(13H)-Tetraones


13-Aryl-12H-dibenzo[b,i]xanthene-5,7,12,14(13H)-tetraone derivatives were synthesized by the one-pot condensation of 2-hydroxy-1,4-naphthoquinone and aldehydes under solvent-free conditions with good yields in the presence of silica-supported sodium hydrogen sulfate as heterogeneous catalyst. The catalyst is easily prepared, reusable, low-cost, and environment-friendly under the reaction conditions.


aldehyde dibenzo[b,i]xanthenes 2-hydroxy-1,4-naphthoquinone silica-supported sodium hydrogen sulfate solvent-free reaction 


  1. 1.
    T. Hideo and J. Teruomi, JP Pat. Appl. JPS565480 (A).Google Scholar
  2. 2.
    J. M. Jamison, K. Krabill, A. Hatwalkar, E. Jamison, and C.-C. Tsai, Cell Biol. Int. Rep., 14, 1075 (1990).CrossRefGoogle Scholar
  3. 3.
    K. Chibale, M. Visser, D. van Schalkwyk, P. J. Smith, A. Saravanamuthu, and A. H. Fairlamb, Tetrahedron, 59, 2289 (2003).Google Scholar
  4. 4.
    J. P. Poupelin, G. Saint-Ruf, O. Foussard-Blanpin, G. Narcisse, G. Uchida Emouf, and R. Lacroix, Eur. J. Med. Chem., 13, 67 (1978).Google Scholar
  5. 5.
    B. B. Bhowmik and P. Ganguly, Spectrochim. Acta, 61, 1997 (2005).CrossRefGoogle Scholar
  6. 6.
    M. F. Sartori, Chem. Rev., 63, 279 (1963).CrossRefGoogle Scholar
  7. 7.
    M. Behforouz, J. Haddad, W. Cai, and Z. Gu, J. Org. Chem., 63, 343 (1998).CrossRefGoogle Scholar
  8. 8.
    A. S. Hammam, M. S. K. Youssef, Sh. M. Radwansh, and M. A. Abdel-Rahman, Bull. Korean Chem. Soc., 25, 779 (2004).CrossRefGoogle Scholar
  9. 9.
    S. Patai and Z. Rappoport (editors), The Chemistry of the Quinonoid Compounds, John Wiley & Sons, London, 1988.Google Scholar
  10. 10.
    Z. N. Tisseh, S. C. Azimi, P. Mirzaei, and A. Bazgir, Dyes Pigm., 79, 273 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Bazgir, Z. N. Tisseh, and P. Mirzaei, Tetrahedron Lett., 49, 5165 (2008).CrossRefGoogle Scholar
  12. 12.
    Y. Li, B. Du, X. Xu, D. Shi, and S. Ji, Chin. J. Chem., 27, 1563 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Rahmati, Chin. Chem. Lett., 21, 761 (2010).CrossRefGoogle Scholar
  14. 14.
    H. R. Shaterian, M. Ranjbar, and K. Azizi, J. Mol. Liq., 162, 95 (2011).CrossRefGoogle Scholar
  15. 15.
    J. A. Melero, R. Van Grieken, and G. Morales, Chem. Rev., 106, 3790 (2006).CrossRefGoogle Scholar
  16. 16.
    M. Adharvana Chari and K. Syamasundar, J. Mol. Catal. A: Chem., 221, 137 (2004).CrossRefGoogle Scholar
  17. 17.
    S. Rostamizadeh, N. Shadjou, A. M. Amani, and S. Balalaie, Chin. Chem. Lett., 19, 1151 (2008).CrossRefGoogle Scholar
  18. 18.
    R. K. Hunnur, B. Sunilkumar, P. S. Kumar, N. Srinivasulu, R. H. Udupi, and V. Hima bindu, Khim. Geterotsikl. Soedin., 196 (2008). [Chem. Heterocycl. Compd., 44, 143 (2008).]Google Scholar
  19. 19.
    M. Mo, Theses M. Sci. (Chem.), Wu Xi, 2013.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Shandong University of Science and TechnologyQingdaoP. R. China

Personalised recommendations