Skip to main content
Log in

Reaction of 3-Alkynylquinoxaline-2-carbonitriles with Sodium Azide: an Experimental and Theoretical Study

  • EDITOR’S CHOICE
  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The reaction of 3-alkynylquinoxaline-2-carbonitriles with sodium azide in DMF at 60 °C leads to the formation of 4,5-disubstituted 2H-1,2,3-triazoles in 38-82% yields. The analogous reaction in toluene in the presence of AlCl3 takes place as a tandem process involving 1,3-dipolar cycloaddition of the azide ion to the nitrile group followed by 6-endo-digonal cyclization with the formation of 5-aryl-tetrazolo[1′,5′:1,3]pyrido[3,4-b]quinoxalines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E. A. Glazer and L. R. Chappel, J. Med. Chem., 25, 766 (1982).

    Article  CAS  Google Scholar 

  2. E. A. Glazer and J. E. Presslitz, J. Med. Chem., 25, 868 (1982).

    Article  Google Scholar 

  3. J. Harmenberg, A. Åkesson-Johansson, A. Gräslund, T. Malmfors, J. Bergman, B. Wahren, S. Åkerfeldt, L. Lundblad, and S. Cox, Antiviral Res., 15, 193 (1991).

    Article  CAS  Google Scholar 

  4. L. E. Seitz, W. J. Suling, and R. C. Reynolds, J. Med. Chem., 45, 5604 (2002).

    Article  CAS  Google Scholar 

  5. A. Burguete, E. Pontiki, D. Hadjipavlou-Litina, R. Villar, E. Vicente, B. Solano, S. Ancizu, S. Pérez-Silanes, I. Aldana, and A. Monge, Bioorg. Med. Chem. Lett., 17, 6439 (2007).

    Article  CAS  Google Scholar 

  6. C. Barea, A. Pabón, S. Pérez-Silanes, S. Galiano, G. Gonzalez, A. Monge, E. Deharo, and I. Aldana, Molecules, 18, 4718 (2013).

    Article  CAS  Google Scholar 

  7. K. Watanabe, H. Oguri, and H. Oikawa, Curr. Opin. Chem. Biol., 13, 189 (2009).

    Article  CAS  Google Scholar 

  8. P. Thirumurugan, D. Muralidharan, and P. T. Perumal, Dyes Pigm., 81, 245 (2009).

    Article  CAS  Google Scholar 

  9. K. R. J. Thomas, J. T. Lin, Y.-T. Tao, and C. H. Chuen, J. Mater. Chem., 12, 3516 (2002).

    Article  Google Scholar 

  10. M. Ananth Reddy, A. Thomas, G. Mallesham, and B. Sridhar, V. Jayathirtha Rao, K. Bhanuprakash, Tetrahedron Lett., 52, 6942 (2011).

    Article  Google Scholar 

  11. P. Wang, Z. Xie, Z. Hong, J. Tang, O. Wong, C.-S. Lee, N. Wong, and S. Lee, J. Mater. Chem., 13, 1894 (2003).

    Article  CAS  Google Scholar 

  12. R. Chinchilla and C. Nájera, Chem. Rev., 107, 874 (2007).

    Article  CAS  Google Scholar 

  13. N. Sato, in: A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, and R. J. K. Taylor (editors), Comprehensive Heterocyclic Chemistry III, Vol. 8, Elsevier, Amsterdam (2008), p. 273.

    Chapter  Google Scholar 

  14. A. Keivanloo, M. Bakherad, and A. Rahimi, Synthesis, 1599 (2010).

  15. M. Bakherad, A. Keivanloo, and S. Samangooei, Tetrahedron Lett., 53, 1447 (2012).

    Article  CAS  Google Scholar 

  16. A. V. Gulevskaya, H. T. L. Nguen, A. S. Tyaglivy, and A. F. Pozharskii, Tetrahedron, 68, 488 (2012).

    Article  CAS  Google Scholar 

  17. P. Roy and B. K. Ghorai, Tetrahedron Lett., 53, 235 (2012).

    Article  CAS  Google Scholar 

  18. P. Roy and K. Ghorai, Beilstein J. Org. Chem., 6, No. 52, DOI: 10.3762/bjoc.6.52 (2010).

    Google Scholar 

  19. A. V. Gulevskaya, R. Yu. Lazarevich, and A. F. Pozharskii, Tetrahedron, 69, 910 (2013).

    Article  CAS  Google Scholar 

  20. A. V. Gulevskaya, S. V. Dang, A. S. Tyaglivy, A. F. Pozharskii, O. N. Kazheva, A. N. Chekhlov, and O. A. Dyachenko, Tetrahedron, 66, 146 (2010).

    Article  CAS  Google Scholar 

  21. M. Meldal and C. W. Tornøe, Chem. Rev., 108, 2952 (2008).

    Article  CAS  Google Scholar 

  22. P. D. Jarowski, Y.-L. Wu, W. B. Schweizer, and F. Diederich, Org. Lett., 10, 3347 (2008).

    Article  CAS  Google Scholar 

  23. W. Zeng, A. Degterev, E. Hsu, J. Yuan, and C. Yuan, Bioorg. Med. Chem. Lett., 18, 4932 (2008).

    Article  Google Scholar 

  24. C.-W. Tsai, S.-C. Yang, Y.-M. Liu, and M.-J. Wu, Tetrahedron, 65, 8367 (2009).

    Article  CAS  Google Scholar 

  25. A. S. Tyaglivy, A. V. Gulevskaya, A. F. Pozharskii, and O. I. Askalepova, Tetrahedron, 69, DOI: 10.1016/j.tet.2013.09.005 (2013).

    Google Scholar 

  26. V. A. Ostrovskii, G. I. Koldobskii, and R. E. Trifonov, in: A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, and R. J. K. Taylor (editors), Comprehensive Heterocyclic Chemistry III, Vol. 6, Elsevier, Amsterdam (2008), p. 257.

    Chapter  Google Scholar 

  27. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput., 2, 364 (2006).

    Article  Google Scholar 

  28. V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, J. Comput. Chem., 22, 976 (2001).

    Article  CAS  Google Scholar 

  29. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. R. Schleyer, J. Comput. Chem., 4, 294 (1983).

    Article  CAS  Google Scholar 

  30. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys., 80, 3265 (1984).

    Article  CAS  Google Scholar 

  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision E.01, Gaussian Inc., Wallingford (2004).

  32. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, 899 (1988).

    Article  CAS  Google Scholar 

  33. R. M. Minyaev, Usp. Khim., 63, 939 (1994). [Russ. Chem. Rev., 63, 883 (1994).]

    CAS  Google Scholar 

Download references

The work was carried out with financial support from the Russian Foundation for Basic Research (grant No. 11-03-00079).

The authors thank Z. A. Starikova* (Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow) for carrying out the X-ray structural investigation.

*Deceased

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gulevskaya.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1346-1355, September, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyaglivy, A.S., Steglenko, D.V. & Gulevskaya, A.V. Reaction of 3-Alkynylquinoxaline-2-carbonitriles with Sodium Azide: an Experimental and Theoretical Study. Chem Heterocycl Comp 49, 1255–1263 (2013). https://doi.org/10.1007/s10593-013-1373-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-013-1373-3

Keywords

Navigation