Advertisement

Chemistry of Heterocyclic Compounds

, Volume 49, Issue 8, pp 1251–1253 | Cite as

Synthesis of a new photochromic 2,2-diphenylpyrano[3,2-h]quinoline

  • R. V. Tyurin
  • B. S. Luk’yanov
  • A. V. Chernyshev
  • I. V. Ozhogin
  • M. B. Luk’yanova
Article

The formation of new materials based on the bistable structures consisting of light-sensitive fragments tightly bonded to complex-forming centers of molecules is one of the priority areas at the junction of organic, coordination chemistry, and photochemistry.

2H-Pyrano[3,2-h]quinoline diaryl derivatives are the examples of such compounds, the structure contains a coordination node formed by nitrogen atom of the quinoline ring and the oxygen atom of the annelated pyran heterocycle, which is a potential photochromic fragment of the 2H-chromene part of the molecules.

In agreement with the literature data [1, 2, 3, 4, 5], photochromic derivatives of pyrano[3,2-h]quinoline are known, but they are spirocyclic compounds which contain indole as hetarene, however the pyrrole nitrogen affects the distribution of the electron density in the molecule substantially changing its properties. The basicity of this heteroatom is an important factor, which may effect the study of complex formation and...

Keywords

2H-chromenes 8-hydroxyquinoline photomagnets photochromism 

References

  1. 1.
    J. P. Philips, A. Mueller, and F. Przystal, J. Am. Chem. Soc., 87, 4020 (1963).CrossRefGoogle Scholar
  2. 2.
    J. D. Winkler, C. M. Bowen, and V. Michelet, J. Am. Chem. Soc., 120, 3237 (1998).CrossRefGoogle Scholar
  3. 3.
    C. J. Roxburgh and P. G. Sammes, Eur. J. Org. Chem., 4, 1050 (2006).CrossRefGoogle Scholar
  4. 4.
    A. V. Chernyshev, A. V. Metelitsa, E. B. Gaeva, N. A. Voloshin, G. S. Borodkin, and V. I. Minkin, J. Phys. Org. Chem., 20, 908 (2007).CrossRefGoogle Scholar
  5. 5.
    V. I. Minkin, A. G. Starikov, R. M. Minyaev, and A. A. Starikova, Teoret. i. Eksperim. Khim., 46, 352 (2010).Google Scholar
  6. 6.
    S. V. Paramonov, V. Lokshin, A. B. Smolentsev, E. M. Glebov, V. V. Korolev, S. S. Basok, K. A. Lysenko, S. Delbaere, and O. K. Fedorova, Tetrahedron, 68, 7873 (2012).CrossRefGoogle Scholar
  7. 7.
    M. M. Oliveira, C. Moustrou, L.M. Carvalho, J. A. C. Silva, A. Samat, R. Guglielmetti, R. Dubest, J. Aubard, and A. M. F. Oliveira-Campos, Tetrahedron, 58, 1709 (2002).CrossRefGoogle Scholar
  8. 8.
    P.J. Coelho, L. M. Carvalho, J. A. C. Silva, A. M. F. Oliveira-Campos, A. Samat, and R. Guglielmetti, Helv. Chim. Acta, 84, 117 (2001).CrossRefGoogle Scholar
  9. 9.
    M.-J. R. P. Queiroz and R. Guglielmetti, Phosphorus, Sulfur Silicon Relat. Elem., 153, 397 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • R. V. Tyurin
    • 1
  • B. S. Luk’yanov
    • 2
  • A. V. Chernyshev
    • 2
  • I. V. Ozhogin
    • 2
  • M. B. Luk’yanova
    • 2
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-the-DonRussia
  2. 2.Scientific-Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-the-DonRussia

Personalised recommendations