Advertisement

Chemistry of Heterocyclic Compounds

, Volume 49, Issue 4, pp 624–635 | Cite as

Synthesis of new 2-alkyl-5-arylimino-2,5-dihydroisothiazole derivatives

  • I. Skrastiņa
  • A. Baran
  • D. Muceniece
Article

The cyclization of 2-substituted N-arylamides of 3-alkylaminobut-2-enethioic acid gave a series of new 2-alkyl-5-arylimino-2,5-dihydroisothiazole derivatives containing a benzoyl or ester group at position 4. A study was carried out on the course of this reaction in the presence of various oxidizing agents, including halogens, N-bromosuccinimide, hydrogen peroxide. Some of the isothiazoles obtained in this work exhibited cytotoxic activity against both normal and cancer cell lines.

Keywords

2-alkyl-5-arylimino-2,5-dihydroisothiazoles 2-substituted N-arylamides of 2-alkylaminobut-2-enethioic acid enamine-imine tautomerism oxidative cyclization 

References

  1. 1.
    G. P. Volpp, US Pat. Appl. 3375161; Chem. Abstr., 68, 113581 (1968).Google Scholar
  2. 2.
    A. G. Schering, NL Pat. Appl. 6605902; Chem. Abstr., 66, 76001 (1966).Google Scholar
  3. 3.
    M. Heil, T. Bretschneider, G. Kleefeld, C. Erdelen, K. H. Kuck, K. Stenzel, A. Turberg, and N. Mencke, DE Pat. Appl. 19727162; Chem. Abstr., 130, 110258a (1999).Google Scholar
  4. 4.
    T. Bretschneider, G. Kleefeld, C. Erdelen, A. Turberg, and N. Mencke, DE Pat. Appl. 19736545; Chem. Abstr., 130, 182458p (1999).Google Scholar
  5. 5.
    M. R. Pinizzotto, A. Garozzo, F. Guerrera, A. Castro, M. G. La Rosa, P. M. Furneri, and E. Geremia, Antiviral Res., 19, 29 (1992).CrossRefGoogle Scholar
  6. 6.
    C. C. C. Cutrì, A. Garozzo, C. Pannecouque, A. Castro, F. Guerrera, and E. De Clercq, Antiviral Chem. Chemother., 15, 201 (2004).Google Scholar
  7. 7.
    D. Cież and E. Szneler, Monatsh. Chem., 136, 2059 (2005).CrossRefGoogle Scholar
  8. 8.
    D. Cież and E. Szneler, J. Chem. Res., 4, 200 (2007).Google Scholar
  9. 9.
    D. M. Argilagos, R. W. Kunz, A. Linden, and H. Heimgartner, Helv. Chem. Acta, 81, 2388 (1998).CrossRefGoogle Scholar
  10. 10.
    J. Goerdeler and H. Pohland, Chem. Ber., 94, 2950 (1961).CrossRefGoogle Scholar
  11. 11.
    J. Goerdeler and J. Gnad, Chem. Ber., 98, 1531 (1965).CrossRefGoogle Scholar
  12. 12.
    J. Goerdeler, C. Lindner, and F. Zander, Chem. Ber., 114, 536 (1981).CrossRefGoogle Scholar
  13. 13.
    H. Foks, D. Pancechowska-Ksepko, M. Janowiec, Z. Zwolska, and E. Augustynowicz-Kopeé, Phosphorus, Sulfur Silicon Relat. Elem., 180, 2291 (2005).CrossRefGoogle Scholar
  14. 14.
    D. M. Argilagos, M. I. G. Trimiño, A. M. Cabrera, A. Linden, and H. Heimgartner, Helv. Chem. Acta, 80, 273 (1997).CrossRefGoogle Scholar
  15. 15.
    M. I. G. Trimiño, A. M. Cabrera, H. M. Castro, A. R. Pérez, D. M. Argilagos, A. Linden, and H. Heimgartner, Helv. Chem. Acta, 81, 718 (1998).CrossRefGoogle Scholar
  16. 16.
    B. Zaleska, D. Cież, and A. Haas, Synth. Commun., 26, 4165 (1996).CrossRefGoogle Scholar
  17. 17.
    B. Zaleska and S. Lis, Synth. Commun., 31, 189 (2001).CrossRefGoogle Scholar
  18. 18.
    Y. Goerdeler and U. Krone, Chem. Ber., 102, 2273 (1969).CrossRefGoogle Scholar
  19. 19.
    Y. Dai, H. Tian, B. Sun, Y. Sun, H. Chen, and X. Liu, J. Chem. Res., 9, 495 (2012).CrossRefGoogle Scholar
  20. 20.
    J. Goerdeler and U. Keuser, Chem. Ber., 97, 2209 (1964).CrossRefGoogle Scholar
  21. 21.
    P. Sharma, A. Kumar, P. Kumari, J. Singh, and M. P. Kaushik, Med. Chem. Res., 21, 1136 (2012).CrossRefGoogle Scholar
  22. 22.
    J. Garín, E. Meléndez, F. L. Merchán, P. Merino, J. Orduna, and T. Tejero, Synth. Commun., 20, 2327 (1990).CrossRefGoogle Scholar
  23. 23.
    T. Von Papenfuhs, Angew. Chem., 94, 1155 (1982).Google Scholar
  24. 24.
    D. S. Bose and M. Idrees, J. Org. Chem., 71, 8261 (2006).CrossRefGoogle Scholar
  25. 25.
    F. M. Moghaddam and H. Z. Boeini, Synlett., 1612 (2005).Google Scholar
  26. 26.
    V. Rey, S. M. Soria-Castro, J. E. Argüello, and A. B. Peñéñory, Tetrahedron Lett., 50, 4720 (2009).CrossRefGoogle Scholar
  27. 27.
    J. Goerdeler and H. Pohland, Chem. Ber., 96, 526 (1963).CrossRefGoogle Scholar
  28. 28.
    N. P. Belskaya, W. Dehaen, and V. A. Bakulev, ARKIVOC, i, 275 (2010).Google Scholar
  29. 29.
    P. Arsenyan, E. Paegle, S. Belyakov, I. Shestakova, E. Jaschenko, I. Domracheva, and J. Popelis, Eur. J. Med. Chem., 46, 3434 (2011).CrossRefGoogle Scholar
  30. 30.
    D. J. Fast, L. C. Lynch, and R. W. Leu, J. Leukocyte Biol., 52, 255 (1992).Google Scholar
  31. 31.
    M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, and R. Spagna, J. Appl. Crystallogr., 38, 381 (2005).CrossRefGoogle Scholar
  32. 32.
    G. M. Sheldrick, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., A64, 112 (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Latvian Institute of Organic SynthesisRigaLatvia

Personalised recommendations