Advertisement

Chemistry of Heterocyclic Compounds

, Volume 49, Issue 4, pp 507–528 | Cite as

Acetamidines and acetamidoximes containing an electron-withdrawing group at the α-carbon atom: their use in the synthesis of nitrogen heterocycles (review)*

  • P. S. Lobanov
  • D. V. Dar’in
Article

Published information on heterocyclizations involving acetamidines and acetamidoximes substituted at the α-position with an electron-withdrawing group is reviewed, where these starting materials have been used in the synthesis of 2-aminoazaheterocycles (2-aminopyridines, 2-aminopyrroles, and 2-aminoazirines). In such reactions the α-carbon atom of the amidine or amidoxime is included in the ring of the obtained heterocycle.

Keywords

amidines amidoximes aminopyridines aminopyrroles enediamines pyrimidines cyclization cyclocondensation 

References

  1. 1.
    S. G. Ryazanov, S. I. Selivanov, D. V. Dar’in, P. S. Lobanov, and A. A. Potekhin, Zh. Org. Khim., 44, 292 (2008).Google Scholar
  2. 2.
    H. Mertens, R. Troschütz, and H. J. Roth, Arch. Pharm. (Weinheim, Ger.), 319, 14 (1986).CrossRefGoogle Scholar
  3. 3.
    A. Dornow and E. Neuse, Chem. Ber., 84, 296 (1951).CrossRefGoogle Scholar
  4. 4.
    B. L. Narayana, A. R. R. Rao, and P. S. Rao, Eur. J. Med. Chem., 44, 1369 (2009).CrossRefGoogle Scholar
  5. 5.
    D. G. Batt and G. C. Houghton, J. Heterocycl. Chem., 32, 963 (1995).CrossRefGoogle Scholar
  6. 6.
    G. C. Stucky, J.-P. Roduit, and B. Schmidt, Chimia, 51, 280 (1997).Google Scholar
  7. 7.
    A. Dornow and P. Karlson, Chem. Ber., 73, 542 (1940).Google Scholar
  8. 8.
    A. V. Galenko, P. S. Lobanov, and A. A. Potekhin, Vestn. SPbGU, Ser. 4, No. 1, 84 (2007).Google Scholar
  9. 9.
    A. Dornow and O. Hahmann, Arch. Pharm. (Weinheim, Ger.), 290, 20 (1957).CrossRefGoogle Scholar
  10. 10.
    C. H. Senanayake, L. E. Fredenburgh, R. A. Reamer, J. Liu, R. D. Larsen, T. R. Verhoeven, and P. J. Reider, Tetrahedron Lett., 35, 5775 (1994).CrossRefGoogle Scholar
  11. 11.
    C.-Y. Huang, L. A. Cabell, and E. V. Anslyn, J. Am. Chem. Soc., 116, 2778 (1994).CrossRefGoogle Scholar
  12. 12.
    C.-Y. Huang, L. A. Cabell, and E. V. Anslyn, Tetrahedron Lett., 31, 7411 (1990).CrossRefGoogle Scholar
  13. 13.
    R. Balicki and P. Nantka-Namirski, Pol. J. Chem., 54, 2175 (1980).Google Scholar
  14. 14.
    V. S. Berseneva, V. A. Bakulev, W. Dehaen, S. Toppet, and M. Borovkova, Tetrahedron, 63, 4491 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Casimiro-Garcia, G. F. Filzen, D. Flynn, C. F. Bigge, J. Chen, J. A. Davis, D. A. Dudley, J. J. Edmunds, N. Esmaeil, A. Geyer, R. J. Heemstra, M. Jalaie, J. F. Ohren, R. Ostroski, T. Ellis, R. P. Schaum, and C. Stoner, J. Med. Chem., 54, 4219 (2011).CrossRefGoogle Scholar
  16. 16.
    M. Söllhuber-Kretzer and R. Troschütz, Arch. Pharm. (Weinheim, Ger.), 315, 783 (1982).CrossRefGoogle Scholar
  17. 17.
    D. J. Brown and P. Waring, Aust. J. Chem., 30, 621 (1977).CrossRefGoogle Scholar
  18. 18.
    R. Balicki and P. Nantka-Namirski, Pol. J. Chem., 55, 2165 (1981).Google Scholar
  19. 19.
    C. Hoornaert, M. Daumas, M. Aletru, and J.-C. Muller, US Pat. Appl. 5472967.Google Scholar
  20. 20.
    M. Süße and S. Johne, Z. Chem., 27, 69 (1987).CrossRefGoogle Scholar
  21. 21.
    K. G. Pike, M. R. V. Finlay, S. M. Fillery, and A. P. Dishington, WO Pat. Appl. 2007080382.Google Scholar
  22. 22.
    J. H. Hutchinson, N. S. Stock, J. R. Roppe, J. M. Scott, B. A. Stearns, Y. P. Truong, D. Volkots, and T. Parr, US Pat. Appl. 2010081673.Google Scholar
  23. 23.
    E. D. Raczyńska, W. Kosińska, B. Ośmiałowski, and R. Gawinecki, Chem. Rev., 105, 3561 (2005).CrossRefGoogle Scholar
  24. 24.
    A. I. Kol'tsov and G. M. Kheifets, Usp. Khim., 40, 1646 (1971).CrossRefGoogle Scholar
  25. 25.
    M. T. Cocco, C. Congiu, and A. Maccioni, J. Heterocycl. Chem., 27, 1143 (1990).CrossRefGoogle Scholar
  26. 26.
    F. Takabe, Y. Hirano, A. Funyu, M. Kobayashi, and T. Mitsunari, US Pat. Appl. 2011287937.Google Scholar
  27. 27.
    A. Maquestiau, J.-J. V. Eynde, and P. Papleux, Bull. Soc. Chim. Belg., 94, 849 (1985).CrossRefGoogle Scholar
  28. 28.
    M. T. Cocco, C. Congiu, V. Onnis, M. Morelli, V. Felipo, and O. Cauli, Bioorg. Med. Chem., 12, 4169 (2004).CrossRefGoogle Scholar
  29. 29.
    M. T. Cocco, C. Congiu, A. Maccioni, and A. Plumitallo, J. Heterocycl. Chem., 26, 1859 (1989).CrossRefGoogle Scholar
  30. 30.
    S.-J. Yan, Y.-F. Niu, R. Huang, and J. Lin, Synlett, 2821 (2009).Google Scholar
  31. 31.
    S. David and H. Hirshfeld, J. Chem. Soc. C, 133 (1969).Google Scholar
  32. 32.
    R. Troschütz and A. Lückel, Arch. Pharm. (Weinheim, Ger.), 325, 785 (1992).CrossRefGoogle Scholar
  33. 33.
    C. Willemann, R. Grünert, P. J. Bednarski, and R. Troschütz, Bioorg. Med. Chem., 17, 4406 (2009).CrossRefGoogle Scholar
  34. 34.
    R. Troschütz and A. Karger, J. Heterocycl. Chem., 33, 1815 (1996).CrossRefGoogle Scholar
  35. 35.
    R. Troschütz and A. Karger, J. Heterocycl. Chem., 34, 1147 (1997).CrossRefGoogle Scholar
  36. 36.
    T. Hussenether, H. Hübner, P. Gmeiner, and R. Troschütz, Bioorg. Med. Chem., 12, 2625 (2004).CrossRefGoogle Scholar
  37. 37.
    R. Morgentin, F. Jung, M. Lamorlette, M. Maudet, M. Ménard, P. Plé, G. Pasquet, and F. Renaud, Tetrahedron, 65, 757 (2009).CrossRefGoogle Scholar
  38. 38.
    P. J. Beswick, A. P. Blackaby, C. Bountra, T. Brown, K. Browning, I. B. Campbell, J. Corfield, R. J. Gleave, S. B. Guntrip, R. M. Hall, S. Hindley, P. F. Lambeth, F. Lucas, N. Mathews, A. Naylor, H. Player, H. S. Price, P. J. Sidebottom, N. L. Taylor, G. Webb, and J. Wiseman, Bioorg. Med. Chem. Lett., 19, 4509 (2009).CrossRefGoogle Scholar
  39. 39.
    A. S. Kiselyov, Tetrahedron Lett., 46, 1663 (2005).CrossRefGoogle Scholar
  40. 40.
    M. Yaqub, R. Perveen, Z. Shafiq, H. Pervez, and M. N. Tahir, Synlett, 1755 (2012).Google Scholar
  41. 41.
    T. Ogawa, A. Nakazato, K. Tsuchida, and K. Hatayama, Chem. Pharm. Bull., 41, 108 (1993).CrossRefGoogle Scholar
  42. 42.
    T. Kobayashi, T. Inoue, Z. Kita, H. Yoshiya, S. Nishino, K. Oizumi, and T. Kimura, Chem. Pharm. Bull., 43, 788 (1995).CrossRefGoogle Scholar
  43. 43.
    T. Kobayashi, T. Inoue, S. Nishino, Y. Fujihara, K. Oizumi, and T. Kimura, Chem. Pharm. Bull., 43, 797 (1995).CrossRefGoogle Scholar
  44. 44.
    J. Marco-Contelles, R. León, C. de los Ríos, A. Samadi, M. Bartolini, V. Andrisano, O. Huertas, X. Barril, F. J. Luque, M. I. Rodríguez-Franco, B. López, M. G. López, A. G. García, M. do Carmo Carreiras, and M. Villarroya, J. Med. Chem., 52, 2724 (2009).CrossRefGoogle Scholar
  45. 45.
    D. A. Bell and E. V. Anslyn, Tetrahedron, 51, 7161 (1995).CrossRefGoogle Scholar
  46. 46.
    R. Troschütz and A. Lückel, Arch. Pharm. (Weinheim, Ger.), 324, 73 (1991).CrossRefGoogle Scholar
  47. 47.
    L.-R. Wen, C. Liu, M. Li, and L.-J. Wang, J. Org. Chem., 75, 7605 (2010).CrossRefGoogle Scholar
  48. 48.
    C.-Y. Yu, P.-H. Yang, M.-X. Zhao, and Z.-T. Huang, Synlett, 1835 (2006).Google Scholar
  49. 49.
    L.-R. Wen, Z.-R. Li, M. Li, and H. Cao, Green Chem., 14, 707 (2012).CrossRefGoogle Scholar
  50. 50.
    R. Troschütz, Arch. Pharm. (Weinheim, Ger.), 312, 455 (1979).CrossRefGoogle Scholar
  51. 51.
    M. Söllhuber-Kretzer, R. Troschütz, and H. J. Roth, Arch. Pharm. (Weinheim, Ger.), 315, 199 (1982).CrossRefGoogle Scholar
  52. 52.
    R. Troschütz and T. Dennstedt, Arch. Pharm. (Weinheim, Ger.), 327, 33 (1994).CrossRefGoogle Scholar
  53. 53.
    R. Troschütz and T. Dennstedt, Arch. Pharm. (Weinheim, Ger.), 327, 85 (1994).CrossRefGoogle Scholar
  54. 54.
    Z.-T. Huang and Z.-R. Liu, Heterocycles, 24, 2247 (1986).CrossRefGoogle Scholar
  55. 55.
    M.-X. Zhao, M.-X.Wang, and Z.-T. Huang, Tetrahedron, 58, 1309 (2002).CrossRefGoogle Scholar
  56. 56.
    Z.-T. Huang and M.-X. Wang, J. Chem. Soc., Perkin Trans. 1, 1085 (1993).Google Scholar
  57. 57.
    M. Li, Z.-M. Zhou, L.-R. Wen, and Z.-X. Qiu, J. Org. Chem., 76, 3054 (2011).CrossRefGoogle Scholar
  58. 58.
    E. Toja, A. Depaoli, G. Tuan, and J. Kettenring, Synthesis, 272 (1987).Google Scholar
  59. 59.
    V. Pittalà, M. A. Siracusa, M. N. Modica, L. Salerno, A. Pedretti, G. Vistoli, A. Cagnotto, T. Mennini, and G. Romeo, Bioorg. Med. Chem., 19, 5260 (2011).CrossRefGoogle Scholar
  60. 60.
    A. Gangjee, O. A. Namjoshi, M. A. Ihnat, and A. Buchanan, Bioorg. Med. Chem. Lett., 20, 3177 (2010).CrossRefGoogle Scholar
  61. 61.
    A. Gangjee, S. Kurup, M. A. Ihnat, J. E. Thorpe, and S. S. Shenoy, Bioorg. Med. Chem., 18, 3575 (2010).CrossRefGoogle Scholar
  62. 62.
    S. J. Kaspersen, C. Sørum, V. Willassen, E. Fuglseth, E. Kjøbli, G. Bjørkøy, E. Sundby, and B. H. Hoff, Eur. J. Med. Chem., 46, 6002 (2011).CrossRefGoogle Scholar
  63. 63.
    E. Toja, G. Tarzia, P. Ferrari, and G. Tuan, J. Heterocycl. Chem., 23, 1555 (1986).CrossRefGoogle Scholar
  64. 64.
    X.-P. Nie, M.-X. Wang, and Z.-T. Huang, Synthesis, 1439 (2000).Google Scholar
  65. 65.
    G. Danswan, P. D. Kennewell, and W. R. Tully, J. Heterocycl. Chem., 26, 293 (1989).CrossRefGoogle Scholar
  66. 66.
    Z.-T. Huang and Z.-R. Liu, Chem. Ber., 122, 95 (1989).CrossRefGoogle Scholar
  67. 67.
    L.-B. Wang, C.-Y. Yu, and Z.-T. Huang, Synthesis, 1441 (1994).Google Scholar
  68. 68.
    J. Landwehr and R. Troschütz, Synthesis, 2414 (2005).Google Scholar
  69. 69.
    L.-J. Yang, S.-J. Yan, W. Chen, and J. Lin, Synthesis, 3536 (2010).Google Scholar
  70. 70.
    D. V. Dar'in, S. I. Selivanov, P. S. Lobanov, and A. A. Potekhin, Khim. Geterotsikl. Soedin., 1155 (2002). [Chem. Heterocycl. Compd., 38, 1014 (2002)].Google Scholar
  71. 71.
    D. V. Dar'in, S. I. Selivanov, P. S. Lobanov, and A. A. Potekhin, Khim. Geterotsikl. Soedin., 1036 (2004). [Chem. Heterocycl. Compd., 40, 888 (2004).]Google Scholar
  72. 72.
    S. G. Ryazanov, S. I. Selivanov, D. V. Dar'in, P. S. Lobanov, and A. A. Potekhin, Vestn. SPbGU, Ser. 4, No. 2, 138 (2005).Google Scholar
  73. 73.
    I. I. Eliseev, D. V. Dar'in, S. I. Selivanov, P. S. Lobanov, and A. A. Potekhin, Khim. Geterotsikl. Soedin., 567 (2008). [Chem. Heterocycl. Compd., 44, 442 (2008)].Google Scholar
  74. 74.
    S. F. Yan, D. V. Dar'in, P. S. Lobanov, and A. A. Potekhin, Khim. Geterotsikl. Soedin., 585 (2008). [Chem. Heterocycl. Compd., 44, 457 (2008).]Google Scholar
  75. 75.
    O. Yu. Bakulina, E. M. Igumnova, D. V. Dar'in, and P. S. Lobanov, Khim. Geterotsikl. Soedin., 501 (2013). [Chem. Heterocycl. Compd., 49, 466 (2013)].Google Scholar
  76. 76.
    D. V. Dar'in, S. G. Ryazanov, S. I. Selivanov, P. S. Lobanov, and A. A. Potekhin, Khim. Geterotsikl. Soedin., 589 (2008). [Chem. Heterocycl. Compd., 44, 461 (2008)].Google Scholar
  77. 77.
    E. M. Igumnova, S. I. Selivanov, D. V. Dar'in, and P. S. Lobanov, Khim. Geterotsikl. Soedin., 465 (2012). [Chem. Heterocycl. Compd., 48, 436 (2012)].Google Scholar
  78. 78.
    S.-J. Yan, C. Huang, X.-H. Zeng, R. Huang, and J. Lin, Bioorg. Med. Chem. Lett., 20, 48 (2010).CrossRefGoogle Scholar
  79. 79.
    S. Yan, C. Huang, C. Su, Y. Ni, and J. Lin, J. Comb. Chem., 12, 91 (2010).CrossRefGoogle Scholar
  80. 80.
    C. Huang, S.-J. Yan, X.-H. Zeng, X.-Y. Dai, Y. Zhang, C. Qing, and J. Lin, Eur. J. Med. Chem., 46, 1172 (2011).CrossRefGoogle Scholar
  81. 81.
    A. V. Vypolzov, S. F. Yan, D. V. Dar'in, and P. S. Lobanov, Khim. Geterotsikl. Soedin., 791 (2010). [Chem. Heterocycl. Compd., 46, 634 (2010)].Google Scholar
  82. 82.
    A. V. Vypolzov, D. V. Dar'in, and P. S. Lobanov, Izv. Akad. Nauk, Ser. Khim., 873 (2012).Google Scholar
  83. 83.
    D. V. Dar'in, S. I. Selivanov, P. S. Lobanov, and A. A. Potekhin, Vestn. SPbGU, Ser. 4, No. 1, 112 (2005).Google Scholar
  84. 84.
    D. V. Dar'in, S. I. Selivanov, P. S. Lobanov, and A. A. Potekhin, Khim. Geterotsikl. Soedin., 578 (2008). [Chem. Heterocycl. Compd., 44, 451 (2008)].Google Scholar
  85. 85.
    L. B. Clapp, in: A. R. Katritzky and C. W. Rees (editors), Comprehensive Heterocyclic Chemistry, Vol. 6, Pergamon Press, New York (1984), p. 386.Google Scholar
  86. 86.
    A. V. Galenko, S. I. Selivanov, P. S. Lobanov, and A. A. Potekhin, Khim. Geterotsikl. Soedin., 1328 (2007). [Chem. Heterocycl. Compd., 43, 1124 (2007)].Google Scholar
  87. 87.
    A. V. Galenko, S. I. Selivanov, P. S. Lobanov, and A. A. Potekhin, Vestn. SPbGU, Ser. 4, No. 3, 120 (2007).Google Scholar
  88. 88.
    N. D. Heindel and M. C. Chun, Tetrahedron Lett., 12, 1439 (1971).CrossRefGoogle Scholar
  89. 89.
    E. E. Pivneva, A. V. Galenko, D. V. Dar'in, and P. S. Lobanov, Khim. Geterotsikl. Soedin., 1893 (2010). [Chem. Heterocycl. Compd., 46, 1531 (2011)].Google Scholar
  90. 90.
    E. E. Pivneva, A. V. Galenko, D. V. Dar'in, and P. S. Lobanov, Khim. Geterotsikl. Soedin., 942 (2012). [Chem. Heterocycl. Compd., 48, 875 (2012).]Google Scholar
  91. 91.
    J. A. Hyatt, J. Org. Chem., 46, 3053 (1981).CrossRefGoogle Scholar
  92. 92.
    A. V. Eremeev, I. P. Piskunova, and R. S. El'kinson, Khim. Geterotsikl. Soedin., 1202 (1985). [Chem. Heterocycl. Compd., 21, 998 (1985)].Google Scholar
  93. 93.
    I. P. Piskunova, A. V. Eremeev, A. F. Mishnev, and I. A. Vosekalna, Tetrahedron, 49, 4671 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations