Advertisement

Chemistry of Heterocyclic Compounds

, Volume 48, Issue 11, pp 1646–1651 | Cite as

Quantum-chemical study of the reactivity of di- and trinitropyrazoles

  • I. L. Dalinger
  • D. V. Khakimov
  • T. K. Shkineva
  • I. A. Vatsadze
  • G. P. Popova
  • T. S. Pivina
  • S. A. Shevelev
Article

Quantum chemistry methods (DFT B3LYP/6-31G* (3-21G)) were used to calculate the three-dimensional and electronic structure of 4-chloro-3,5-dinitro- and 3,4,5-trinitropyrazoles, as well as their model σ-complexes. Possible reasons for the peculiar reactivity of 3,4,5-trinitropyrazole, 4-chloro-3,5-dinitropyrazole, and their derivatives were examined.

Keywords

dinitropyrazoles trinitropyrazoles σ-complexes nucleophilic substitution quantum-chemical calculations reactivity selective substitution 

References

  1. 1.
    I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, I. O. Kortusov, G. P. Popova, V. V. Kachala, and S. A. Shevelev, Izv. Akad. Nauk, Ser. Khim., 1739 (2010). [Russ. Chem. Bull., Int. Ed., 59, 1786 (2010)].Google Scholar
  2. 2.
    A. A. Zaitsev, T. I. Cherkasova, I. L. Dalinger, V. V. Kachala, Yu. A. Strelenko, I. V. Fedyanin, V. N. Solkan, T. K. Shkineva, G. P. Popova, and S. A. Shevelev, Izv. Akad. Nauk, Ser. Khim., 2004 (2007). [Russ. Chem. Bull., Int. Ed., 56, 2074 (2007)].Google Scholar
  3. 3.
    A. A. Zaitsev, I. O. Kortusov, I. L. Dalinger, V. V. Kachala, G. P. Popova, and S. A. Shevelev, Izv. Akad. Nauk, Ser. Khim., 2054 (2009). [Russ. Chem. Bull., Int. Ed., 58, 2118 (2009)].Google Scholar
  4. 4.
    A. A. Zaitsev, I. L. Dalinger, A. M. Starosotnikov, V. V. Kachala, Yu. A. Strelenko, T. K. Shkineva, and S. A. Shevelev, Zh. Org. Khim., 41, 1538 (2005). [Russ. J. Org. Chem. (Engl. Transl.), 41, 1507 (2005)].Google Scholar
  5. 5.
    A. A. Zaitsev, I. A. Vatsadze, I. L. Dalinger, V. V. Kachala, Yu. V. Nelyubina, and S. A. Shevelev, Izv. Akad. Nauk, Ser. Khim., 2045 (2009). [Russ. Chem. Bull., Int. Ed., 58, 2109 (2009)].Google Scholar
  6. 6.
    A. A. Zaitsev, D. V. Zaiko, I. L. Dalinger, V. V. Kachala, T. K. Shkineva, and S. A. Shevelev, Izv. Akad. Nauk, Ser. Khim., 2058 (2009). [Russ. Chem. Bull., Int. Ed., 58, 2122 (2009)].Google Scholar
  7. 7.
    J. H. Boyer, in: Organic Nitro Chemistry Series, Vol. 1, VCH, Essen (1986), p. 368.Google Scholar
  8. 8.
    A. A. Zaitsev, I. L. Dalinger, and S. A. Shevelev, Usp. Khim., 78, 643 (2009). [Russ. Chem. Rev., 78, 589 (2009)].CrossRefGoogle Scholar
  9. 9.
    I. L. Dalinger, I. A. Vatsadze, G. P. Popova, T. K. Shkineva, and S. A. Shevelev, Mendeleev Commun., 20, 253 (2010).CrossRefGoogle Scholar
  10. 10.
    I. L. Dalinger, I. A. Vatsadze, G. P. Popova, T. K. Shkineva, and S. A. Shevelev, Mendeleev Commun., 20, 355 (2010).CrossRefGoogle Scholar
  11. 11.
    I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, G. P. Popova, and S. A. Shevelev, Mendeleev Commun., 21, 149 (2011).CrossRefGoogle Scholar
  12. 12.
    I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, G. P. Popova, and S. A. Shevelev, Mendeleev Commun., 22, 43 (2012).CrossRefGoogle Scholar
  13. 13.
    I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, G. P. Popova, and S. A. Shevelev, Synthesis, 44, 2058 (2012).CrossRefGoogle Scholar
  14. 14.
    M. J. Frish, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komazomi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN 98. Revision A.9, Gaussian, Inc., Pittsburgh (1998).Google Scholar
  15. 15.
    A. E. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983).CrossRefGoogle Scholar
  16. 16.
    Y. V. Nelyubina, I. L. Dalinger, and K. A. Lyssenko, Angew. Chem., Int. Ed., 50, 2892 (2011).CrossRefGoogle Scholar
  17. 17.
    G. Herve, C. Roussel, and H. Graindorge, Angew. Chem., Int. Ed., 49, 3177 (2010).CrossRefGoogle Scholar
  18. 18.
    P. Sykes, Reaction Mechanisms in Organic Chemistry [Russian translation], Khimiya, Moscow (1991), p. 146.Google Scholar
  19. 19.
    R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989), p. 99.Google Scholar
  20. 20.
    R. G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984).CrossRefGoogle Scholar
  21. 21.
    F. Mendez and J. L. Gazquez, J. Am. Chem. Soc., 116, 9298 (1994).CrossRefGoogle Scholar
  22. 22.
    P. Pérez, L. R. Domingo, M. J. Aurell, and R. Contreras, Tetrahedron, 59, 3117 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • I. L. Dalinger
    • 1
  • D. V. Khakimov
    • 1
  • T. K. Shkineva
    • 1
  • I. A. Vatsadze
    • 1
  • G. P. Popova
    • 1
  • T. S. Pivina
    • 1
  • S. A. Shevelev
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations