Advertisement

Chemistry of Heterocyclic Compounds

, Volume 48, Issue 9, pp 1420–1422 | Cite as

Novel copper-catalyzed rearrangement of 2-aminobenzothiazoles to phenothiazines

  • T. Beresneva
  • E. Abele
Article
Phenothiazines and related compounds are of great interest as biologically active compounds [ 1, 2, 3, 4]. Historically, the first phenothiazines were prepared by interaction of diphenylamine hydrochloride with sodium thiosulfate [ 5]. These compounds were also prepared from 2-phenylaminobenzoic acids and iodine in the presence of sulfur [ 6], diarylamines and iodine / sulfur [ 7, 8], 2-azidodiaryl sulfides / decahydronaphthalene / I 2 / pyridine (then Cu / quinoline) [ 9], and 2-nitrodiaryl sulfides and triethyl phosphite [ 10]. Recently, two Cu-catalyzed methods for the synthesis of phenothiazines using the systems 2-amino-2'-bromodiaryl sulfides / CuI / K 2CO 3 / L-proline / methoxymethyl ester [ 11] and 2-aminomercaptanes / 1,2-dibromobenzene / CuI / K 2CO 3 / DMSO [ 12] have been developed. However, synthesis of phenothiazines by Cu-catalyzed rearrangement of 2-aminobenzothiazoles in the presence of 1,2-dibromobenzene is described for the first time.

Keywords

2-aminobenzothiazoles 2,3-dibromopyridine 1,2-dihalobenzenes phenothiazines copper catalysis 

References

  1. 1.
    G. Sudeshna and K. Parimal, Eur. J. Pharmacol., 648, 6 (2010).CrossRefGoogle Scholar
  2. 2.
    N. Motohashi, Anticancer Res., 11, 1125 (1991).Google Scholar
  3. 3.
    L. Amaral, J. E. Kristiansen, M. Viveiros, and J. Atouguia, J. Antimicrob. Chemother., 47, 505 (2001).Google Scholar
  4. 4.
    G. Singh, T. B. Koerner, S. B. Godefroy, and C. Armand, Bioorg. Med. Chem. Lett., 22, 2160 (2012).CrossRefGoogle Scholar
  5. 5.
    A. Bernthsen, Justus Liebigs Ann. Chem., 230, 169 (1885).Google Scholar
  6. 6.
    S. P. Massie and P. K. Kadaba, J. Org. Chem., 21, 347 (1956).Google Scholar
  7. 7.
    R. D. Moffett and B. D. Aspergren, J. Am. Chem. Soc., 82, 1600 (1960).CrossRefGoogle Scholar
  8. 8.
    H. Gilman and D. A. Shirley, J. Am. Chem. Soc., 66, 888 (1944).CrossRefGoogle Scholar
  9. 9.
    M. Messer and D. Farge, Bull. Soc. Chim. Fr., 2832 (1968).Google Scholar
  10. 10.
    J. I. G. Cadogan, S. Kulik, C. Thomson, and M. J. Todd, J. Chem. Soc. C, 2437 (1970).Google Scholar
  11. 11.
    D. Ma, Q. Geng, H. Zhang, and Y. Jiang, Angew. Chem., Int. Ed., 49, 1291 (2010).CrossRefGoogle Scholar
  12. 12.
    C. Dai, X. Sun, X. Tu, L. Wu, D. Zhan, and Q. Zeng, Chem. Commun., 5367 (2012).Google Scholar
  13. 13.
    A. I. Kiprianov and I. K. Ushenko, Zh. Obshch. Khim., 17, 2201 (1947).Google Scholar
  14. 14.
    W. A. Szabo, R. H. Chung, C. C. Tam, and M. Tishler, J. Org. Chem., 45, 744 (1980).Google Scholar
  15. 15.
    P. B. Madrid, W. E. Polgar, L. Toll, and M. J. Tanga, Bioorg. Med. Chem. Lett., 17, 3014 (2007).CrossRefGoogle Scholar
  16. 16.
    J. J. Eatough, L. S. Fuller, R. H. Good, and R. K. Smalley, J. Chem. Soc. C, 1874 (1970).Google Scholar
  17. 17.
    S. Kurzepa and J. Cieslak, Rocz. Chem., 34, 111 (1960).Google Scholar
  18. 18.
    R. L. Mital and S. K. Jain, J. Chem. Soc. C, 2148 (1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Latvian Institute of Organic SynthesisRigaLatvia

Personalised recommendations