Skip to main content
Log in

Reaction of ethyl 4-aryl-6-bromomethyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates with N-methylmorpholinium 3-cyano-1,4-dihydro- and 3-cyano-1,4,5,6-tetrahydropyridine-2-thiolates

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Alkylation of N-methylmorpholinium 4-Ar1-3-cyano-6-oxo-1,4,5,6-tetrahydropyridine-2-thiolates using ethyl 4-Ar-6-bromomethyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates (10 % KOH, DMF) gives mixtures of diastereomers of ethyl 4-Ar-6-[(4-Ar1-3-cyano-1,4,5,6-tetrahydropyridin-2-ylthio)methyl]-1-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates in overall 30-58 % yield. Under these conditions the N-methylmorpholinium 4-Ar1-5-(N-Ar2-carbamoyl)-3-cyano-6-methyl-1,4-dihydropyridine-2-thiolates undergo aromatization of the dihydropyridine ring to give ethyl 4-Ar-6-[4-Ar1-5-(N-Ar2-carbamoyl)-3-cyano-6-methylpyridin-2-ylthio)methyl]-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates (37-51 %). In the absence of KOH, only the substituted pyridine-2(1 H)-thione is formed as a product of oxidation of the dihydropyridine ring in the starting substrate. Some of the alkylation products obtained possess weak or moderate antibacterial activity towards the specific strains of Escherichia coli and Bacillus subtilis but are inactive towards Candida albicans and Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3

Similar content being viewed by others

Notes

  1. * Integrated intensity of the signal lowered due to partial deuterium exchange.

References

  1. V. P. Litvinov, V. K. Promonenkov, Yu. A. Sharanin, and A. M. Shestopalov, in: Science and Technology Results. Organic Chemistry. Current Trends in the Discovery and Use of Chemical Agents for Plant Protection. The Chemistry of Azines, Vol. 17, VINITI, Moscow (1989), Part II, p. 73.

    Google Scholar 

  2. V. P. Litvinov, S. G. Krivokolysko and V. D. Dyachenko, Khim. Geterotsikl. Soedin., 579 (1999). [Chem. Heterocycl. Compd., 35, 509 (1999)].

    Google Scholar 

  3. V. P. Litvinov, Izv. Akad. Nauk, Ser. Khim., 2123 (1998).

  4. V. P. Litvinov, Phosphorus, Sulfur Silicon Relat. Elem., 74, 139 (1993).

    Article  CAS  Google Scholar 

  5. V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, and A. Senning, Sulfur Reports, 13, 1 (1992).

    Article  CAS  Google Scholar 

  6. V. P. Litvinov, V. V. Dotsenko, and S. G. Krivokolysko, Izv. Akad Nauk, Ser. Khim., 847 (2005).

  7. V. P. Litvinov, V. V. Dotsenko, and S. G. Krivokolysko, The Chemistry of Thienopyridines and Related Systems [in Russian], Nauka Russian Academy of Sciences, Moscow (2006).

    Google Scholar 

  8. V. P. Litvinov, V. V. Dotsenko, and S. G. Krivokolysko, Adv. Heterocycl. Chem., 93, 117 (2007).

    Article  CAS  Google Scholar 

  9. E. A.-G. Bakhite, Phosphorus, Sulfur Silicon Relat. Elem., 178, 929 (2003).

    Article  CAS  Google Scholar 

  10. G. Zigeuner, H. Hamberger, H. Blaschke, and H. Sterk, Monatsh. Chem., 97, 1408 (1966).

    Article  CAS  Google Scholar 

  11. V. V. Dotsenko, S. G. Krivokolysko, V. P. Litvinov, and A. N. Chernega, Izv. Akad. Nauk, Ser. Khim., 339 (2002).

  12. V. V. Dotsenko, S. G. Krivokolysko, V. P. Litvinov, and A. N. Chernega, Izv. Akad. Nauk, Ser. Khim., 918 (2003).

  13. V. V. Dotsenko, S. G. Krivokolysko, and V. P. Litvinov, Mendeleev Commun., 13, 267 (2003).

    Article  Google Scholar 

  14. V. V. Dotsenko, S. G. Krivokolysko, and V. P. Litvinov, Mendeleev Commun., 14, 30 (2004).

    Article  Google Scholar 

  15. V. V. Dotsenko, S. G. Krivokolysko, and V. P. Litvinov, Reports of Moscow State University, Series 2, Chemistry [in Russian], 46, 304 (2005).

    CAS  Google Scholar 

  16. V. V. Dotsenko, S. G. Krivokolysko, and V. P. Litvinov, Khim. Geterotsikl. Soedin., 311 (2009). [Chem. Heterocycl. Compd., 45, 253 (2009)].

    Google Scholar 

  17. V. V. Dotsenko, S. G. Krivokolysko, V. P. Litvinov, and A. N. Chernega, Khim. Geterotsikl. Soedin., 716 (2007). [Chem. Heterocycl. Compd., 43, 599 (2007)].

    Google Scholar 

  18. A. W. Bauer, W. M. M. Kirby, J. C. Sherris, and M. Turck, Am. J. Clin. Pathol., 45, 493 (1966).

    CAS  Google Scholar 

  19. V. D. Dyachenko, S. G. Krivokolysko, V. N. Nesterov, and V. P. Litvinov, Khim. Geterotsikl. Soedin., 1243 (1996). [Chem. Heterocycl. Compd., 32, 1066 (1996)].

    Google Scholar 

  20. S. G. Krivokolysko, V. D. Dyachenko, and V. P. Litvinov, Zh. Org. Khim., 33, 1088 (1997).

    Google Scholar 

  21. V. D. Dyachenko and A. N. Chernega, Khim. Geterotsikl. Soedin., 51 (2006). [Chem. Heterocycl. Compd., 42, 45 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dotsenko.

Additional information

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 492-499, March, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dotsenko, V.V., Lebedeva, I.A., Krivokolysko, S.G. et al. Reaction of ethyl 4-aryl-6-bromomethyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates with N-methylmorpholinium 3-cyano-1,4-dihydro- and 3-cyano-1,4,5,6-tetrahydropyridine-2-thiolates. Chem Heterocycl Comp 48, 462–469 (2012). https://doi.org/10.1007/s10593-012-1016-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-012-1016-0

Keywords

Navigation