Advertisement

Chemistry of Heterocyclic Compounds

, Volume 48, Issue 2, pp 301–308 | Cite as

Preparation of fused n-phenyl-substituted pyridinium derivatives by direct phenylation with nucleogenic phenyl cations

  • N. E. ShchepinaEmail author
  • V. V. Avrorin
  • G. A. Badun
  • S. B. Lewis
  • S. E. Ukhanov
Article

The direct phenylation of a nitrogen atom has been carried out for the first time in fused pyridine derivatives by ion-molecular interaction of nucleogenic phenyl cations with acridine and phenanthridine. N-Phenylacridinium and -phenanthridinium compounds, which are sensitive markers for biological investigations, were obtained labeled with tritium.

Keywords

nucleogenic phenyl cations N-phenylacridinium and -phenanthridinium salts tritium nuclear-chemical synthesis 

References

  1. 1.
    D. H. R. Barton and W. D. Ollis (editors), Comprehensive Organic Chemistry, Pergamon, Oxford (1979); [Russian translation], Vol. 8 (1985), p.327.Google Scholar
  2. 2.
    W. T. Mason, in: Fluorescent and Luminescent Probes, 2nd ed., Academic Press, Cambridge (1999).Google Scholar
  3. 3.
    C. D. Geddes, Dyes Pigm., 45, 243 (2000).CrossRefGoogle Scholar
  4. 4.
    K. Smith, Z. Li, J.-J. Yang, I. Weeks, and J. S. Woodhead, J. Photochem. Photobiol., A, 132, 181 (2000).CrossRefGoogle Scholar
  5. 5.
    N. W. Luedtke, Q. Liu, and Y. Tor, Bioorg. Med. Chem., 11, 5235 (2003).CrossRefGoogle Scholar
  6. 6.
    J. Lin and H. Ju, Biosens. Bioelectron., 20, 1461 (2005).CrossRefGoogle Scholar
  7. 7.
    A. G. Mikhailovskii, T. G. Taranova, B. Ya. Syropyatov, and M. I. Vakhrin, Khim.-farm. Zh., 26, No. 11–12, 53 (1992).Google Scholar
  8. 8.
    T. Ferenc, E. Janik-Spiechowicz, W. Bratkowska, D. Lopaczynska, H. Strozynski, A. Denys, and A. Mordalska, Mutat. Res., Genet. Toxicol. Environ. Mutagen., 444, 463 (1999).CrossRefGoogle Scholar
  9. 9.
    W. A. Denny, Curr. Med. Chem., 9, 1655 (2002).Google Scholar
  10. 10.
    Y.-L. Chen, I.-L. Chen, C.-M. Lu, C.-C. Tzeng, L.-T. Tsao, and J.-P. Wang, Bioorg. Med. Chem., 11, 3921 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Chiron and J.-P. Galy, Synlett, 2349 (2003).Google Scholar
  12. 12.
    R. Simsek, M. Ozkan, E. Kismetli, S. Uma, and C. Safak, Farmaco, 59, 939 (2004).CrossRefGoogle Scholar
  13. 13.
    M. Johnson, N. Bergstand, and K. Edwards, J. Liposome Res., 9, 53 (1999).CrossRefGoogle Scholar
  14. 14.
    N. T. Chaganova, V. N. Buyanov, N. N. Suvorov, T. S. Safonova, I. A. Bezrukov, Yu. A. Ershova, and E. F. Kuleshova, Khim.-farm. Zh., 25, No. 12, 27 (1991).Google Scholar
  15. 15.
    J. Stanslas, D. J. Hagan, M. J. Ellis, C. Turner, J. Carmichael, W. Ward, T. R. Hammonds, and M. F. G. Stevens, J. Med. Chem., 43, 1563 (2000).CrossRefGoogle Scholar
  16. 16.
    B. Klement and M. Vaide, Russ. Pat. 2180333.Google Scholar
  17. 17.
    R. A. Heald, C. Modi, J. C. Cookson, I. Hutchinson, C. A. Laughton, S. M. Gowan, L. R. Kelland, and M. F. G. Stevens, J. Med. Chem., 45, 590 (2002).CrossRefGoogle Scholar
  18. 18.
    H. Baruah, C. L. Rector, S. M. Monnier, and U. Bierbach, Biochem. Pharmacol., 64, 191 (2002).CrossRefGoogle Scholar
  19. 19.
    N. H. Campbell, G. N. Parkinson, A. P. Reszka, and S. Neidle, J. Am. Chem. Soc., 130, 6722 (2008).CrossRefGoogle Scholar
  20. 20.
    J. R. Goodell, A. V. Ougolkov, H. Hiasa, H. Kaur, R. Remmel, D. D. Billadeau, and D. M. Ferguson, J. Med. Chem., 51, 179 (2008).CrossRefGoogle Scholar
  21. 21.
    Z. Ma, G. Saluta, G. L. Kucera, U. Bierbach, Bioorg. Med. Chem. Lett., 18, 3799 (2008).CrossRefGoogle Scholar
  22. 22.
    J. W. Lown, B. C. Gunn, K. C. Majumbar, and E. McGoran, Can. J. Chem., 57, 2305 (1979).CrossRefGoogle Scholar
  23. 23.
    C. Goto, T. Someya, S. Chihara, Y. Mizuguchi, and M. Fukunaga, J. UOEH, 6, 257 (1984).Google Scholar
  24. 24.
    W. Monte and J. Stamm, Tetrahedron Lett., 34, 7161 (1993).CrossRefGoogle Scholar
  25. 25.
    M. J. Gill, N. P. Brenward, and R. Wise, Antimicrob. Agents Chemother., 43, 187 (1999).CrossRefGoogle Scholar
  26. 26.
    T. Mine, Y. Morita, A. Katoka, T. Mizushima, and T. Tsuchiya, Antimicrob. Agents Chemother., 43, 415 (1999).CrossRefGoogle Scholar
  27. 27.
    J. N. A. Tettey, G. G. Skellern, J. M. Midgley, M. H. Grant, R. Willkinson, and A. R. Pitt, Xenobiotica, 29, 349 (1999).CrossRefGoogle Scholar
  28. 28.
    R. J. Anderson, P. W. Groundwater, Y. Huang, A. L. James, S. Orenga, A. Rigby, C. Roger-Dalbert, and J. D. Perry, Bioorg. Med. Chem. Lett., 18, 832 (2008).CrossRefGoogle Scholar
  29. 29.
    V. I. Sladkov, V. A. Khokhlov, Yu. A. Ershova, V. A. Chernov, Yu. V. Khokhlova, A. F. Nanasyuk, and N. N. Suvorov, Khim.-farm. Zh., 21, No. 6, 660 (1987).Google Scholar
  30. 30.
    N. W. Luedtke, Q. Liu, and Y. Tor, Bioorg. Med. Chem., 11, 5235 (2003).CrossRefGoogle Scholar
  31. 31.
    A. Masuda, M. Suva, and M. Suzuki, Russ. Pat. 2183626.Google Scholar
  32. 32.
    N. Patino, C. Di Giorgio, C. Dan-Covalciuc, V. Peytou, R. Terreux, D. Cabrol-Bass, C. Bailly, and R. Condom, Eur. J. Med. Chem., 37, 573 (2002).CrossRefGoogle Scholar
  33. 33.
    C. Leonetti, S. Amodei, C. D'Angelo, A. Rizzo, B. Benassi, A. Antonelli, R. Elli, M. F. G. Stevens, M. D'Incalci, G. Zupi, and A. Biroccio, Mol. Pharmacol., 66, 1138 (2004).CrossRefGoogle Scholar
  34. 34.
    A. D. C. Parently, L. V. Smith, K. M. Guthrie, D.-L. Long, J. Plumb, R. Brown, and L. Cronin, J. Med. Chem., 48, 4504 (2005).CrossRefGoogle Scholar
  35. 35.
    A. Parenty, L. Cronin, and R. Brown, WO Pat. Appl. WO2005054241.Google Scholar
  36. 36.
    L. S. Stratchounski, R. S. Kozlov, G. K. Rechedko, O. U. Stetsiouk, and E. P. Chavrikova, Clin. Microbiol. Infect., 9, 497 (1998).CrossRefGoogle Scholar
  37. 37.
    P. Nordberg, C. Stalsby-Lundborg, and G. Tomson, Int. J. Risk Safety Med., 17, 117 (2005).Google Scholar
  38. 38.
    D. L. Heymann, in: Abstracts of 2010 Conference on Antimicrobial Resistance, Bethesda, Maryland, USA (2010), p. 26.Google Scholar
  39. 39.
    M. H. Scheetz, K. M. Hurt, G. A. Noskin, and C. M. Oliphant, Am. J. Health-System Pharm., 63, 1346 (2006).CrossRefGoogle Scholar
  40. 40.
    K. Kurokawa, H. Hamamoto, M. Matsuo, S. Nishida, N. Yamane, B. L. Lee, K. Murakami, H. Maki, and K. Sekimizu, Antimicrob. Agents Chemother., 53, 4025 (2009).CrossRefGoogle Scholar
  41. 41.
    G. P. Suresha, K. C. Prakasha, K. N. S. Kumara, W. Kapfo, and D. C. Gowda, Int. J. Pept. Res. Ther., 15, 25 (2009).CrossRefGoogle Scholar
  42. 42.
    A. Castiel, L. Visochek, L. Mittelman, F. Dantzer, S. Izraeli, and M. Cohen-Armon, BMC Cancer, 11, 412 (2011).CrossRefGoogle Scholar
  43. 43.
    V. I. Ivanskii, Chemistry of Heterocyclic Compounds [in Russian], Vysshaya Shkola, Moscow (1978).Google Scholar
  44. 44.
    J. A. Joule and K. Mills, Heterocyclic Chemistry, 4th ed., Blackwell Sci., Oxford (2000).Google Scholar
  45. 45.
    J. Chiron and J.-P. Galy, Synthesis, 313 (2004).Google Scholar
  46. 46.
    T. L. Gilchrist, Heterocyclic Chemistry, [Russian translation], Mir, Moscow (1996).Google Scholar
  47. 47.
    M. F. Ansell (editor), Supplements to the 2nd ed. of Rodd’s Chemistry of Carbon Compounds, Vol. 4, Elsevier (1987), part G.Google Scholar
  48. 48.
    A. R. Katritzky, Handbook of Heterocyclic Chemistry, Pergamon Press, New York (1985).Google Scholar
  49. 49.
    B. Dutta, G. K. Kar, and J. K. Ray, Tetrahedron Lett., 44, 8641 (2003).CrossRefGoogle Scholar
  50. 50.
    G. Scherowsky and J. Pickardt, Chem. Ber., 116, 186 (1983).CrossRefGoogle Scholar
  51. 51.
    N. E. Shchepina, V. V. Avrorin, G. A. Badun, S. B. Lewis, V. M. Fedoseev, and S. E. Ukhanov, Vestn. MGU, Ser. 2, Khimiya, 50, 311 (2009).Google Scholar
  52. 52.
    N. E. Shchepina, V. V.Avrorin. G. A. Badun, and G. A. Alexandrova, Russ. Pat. 2320647.Google Scholar
  53. 53.
    N. E. Shchepina, V. V. Avrorin, G. A. Badun, G. A. Alexandrova, S. E. Ukhanov, V. M. Fedoseev, S. B. Lewis, and I. I. Boiko, Khim. Geterotsikl. Soedin., 1008 (2009). [Chem. Heterocycl. Compd., 45, 796 (2009).]Google Scholar
  54. 54.
    N. E. Shchepina, V. D. Nefedov, M. A. Toropova, V. V. Avrorin, and D.S. Gembitskii, Radiokhimiya, 41, 523 (1999).Google Scholar
  55. 55.
    N. E. Shchepina, V. V. Avrorin, G. A. Badun, V. M. Fedoseev, S. E. Ukhanov, and S. B. Lewis, Radiokhimiya, 49, 551 (2007).Google Scholar
  56. 56.
    M. Wojdyr, J. Appl. Cryst., 43, 1126 (2010).CrossRefGoogle Scholar
  57. 57.
    N. E. Shchepina, I. I. Boiko, and G. A. Alexandrova, Khim.-farm. Zh., 45, No. 3, 30 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • N. E. Shchepina
    • 1
    Email author
  • V. V. Avrorin
    • 2
  • G. A. Badun
    • 3
  • S. B. Lewis
    • 4
  • S. E. Ukhanov
    • 5
  1. 1.Natural Science InstitutePerm State UniversityPermRussia
  2. 2.St. Petersburg State UniversitySaint PetersburgRussia
  3. 3.Moscow M. V. Lomonosov State UniversityMoscowRussia
  4. 4.James Madison UniversityHarrisonburgUSA
  5. 5.Perm State Technical UniversityPermRussia

Personalised recommendations