Advertisement

Chemistry of Heterocyclic Compounds

, Volume 48, Issue 1, pp 17–20 | Cite as

Synthesis of fused heterocycles via Pd-catalyzed multiple aromatic C–H activation reactions

  • A. V. Gulevich
  • V. Gevorgyan
Article

Recent developments in the synthesis of fused heterocycles using Pd-catalyzed multiple aromatic C–H activation is discussed in this highlight.

Keywords

C–H activation heterocycles palladium-catalyzed reactions. 

References

  1. 1.
    For a recent review of carbon–heteroatom bond forming reactions, see: A. K. Yudin (editor), Catalyzed Carbon–Heteroatom Bond Formation, Wiley-VCH, Weinheim, 2010.Google Scholar
  2. 2.
    For a recent review of C–H activation reactions, see: J.-Q. Yu and Z. Shi (editors), Topics in Current Chemistry, , Springer, Heidelberg, 2010, vol. 242.Google Scholar
  3. 3.
    For a recent review on synthesis of heterocycles via the Pd-catalyzed C–H activation, see: E. M. Beccalli, G. Broggini, A. Fasana, and M. Rigamonti, J. Organomet. Chem., 696, 277 (2011).Google Scholar
  4. 4.
    For a recent review on oxidative biaryl coupling, see: S.-L. You and J.-B. Xia, Top. Curr. Chem., 292, 165 (2010).Google Scholar
  5. 5.
    For a recent report on dehydrogenative cross-coupling, see: X. Bugautand, F. Glorius, Angew. Chem., Int. Ed., 50, 7479 (2011).Google Scholar
  6. 6.
    For a recent review on dehydrogenative cross-coupling, see: C. S. Yeungand and V. M. Dong, Chem. Rev., 111, 1215 (2011).Google Scholar
  7. 7.
    H. Yoshimoto and H. Itatani, Bull. Chem. Soc. Jpn., 46, 2490 (1973).CrossRefGoogle Scholar
  8. 8.
    A. Shiotani and H. Itatani, Angew. Chem., Int. Ed. Engl., 13, 471 (1974).CrossRefGoogle Scholar
  9. 9.
    B. Åkermark, L. Eberson, E. Jonsson, and E. Pettersson, J. Org. Chem., 40, 1365 (1975).CrossRefGoogle Scholar
  10. 10.
    H. Hagelin, J. D. Osloband, and B. Åkermark, Chem.–Eur. J., 5, 2413 (1999).CrossRefGoogle Scholar
  11. 11.
    T. Itahara, J. Org. Chem, 50, 5272 (1985).CrossRefGoogle Scholar
  12. 12.
    T. Itahara, Heterocycles, 24, 2557 (1986).CrossRefGoogle Scholar
  13. 13.
    H.-J. Knölker, Chem. Lett., 38, 8 (2009).CrossRefGoogle Scholar
  14. 14.
    T. A. Dwight, N. R. Rue, D. Charyk, R. Josselyn, and B. DeBoef, Org. Lett., 9, 3137 (2007).CrossRefGoogle Scholar
  15. 15.
    B. Liégault, D. Lee, M. P. Huestis, D. R. Stuart, and K. Fagnou, J. Org. Chem., 73, 5022 (2008).CrossRefGoogle Scholar
  16. 16.
    L. Ackermann, R. Jeyachandran, H. K. Potukuchi, P. Novák, and L. Büttner, Org. Lett., 12, 2056 (2010).CrossRefGoogle Scholar
  17. 17.
    C. S. Yeung, X. Zhao, N. Borduas, and V. M. Dong, Chem. Sci., 1, 331 (2010).CrossRefGoogle Scholar
  18. 18.
    T. Watanabe, S. Ueda, S. Inuki, S. Oishi, N. Fujii, and H. Ohno, Chem. Commun., 4516 (2007).Google Scholar
  19. 19.
    T. Watanabe, S. Oishi, N. Fujii, and H. Ohno, J. Org. Chem., 74, 4720 (2009).CrossRefGoogle Scholar
  20. 20.
    W. C. P. Tsang, N. Zheng, and S. L. Buchwald, J. Am. Chem. Soc., 127, 14560 (2005).CrossRefGoogle Scholar
  21. 21.
    B.-J. Li, S.-L. Tian, Z. Fangand, and Z.-J. Shi, Angew. Chem., Int. Ed., 47, 1115 (2008).CrossRefGoogle Scholar
  22. 22.
    G.-W. Wang, T.-T. Yuan, and D.-D. Li, Angew. Chem., Int. Ed., 50, 1380 (2011).CrossRefGoogle Scholar
  23. 23.
    J. Karthikeyan and C.-H. Cheng, Angew. Chem., Int. Ed., 50, 9880 (2011).CrossRefGoogle Scholar
  24. 24.
    R. Samanta and A. P. Antonchick, Angew. Chem., Int. Ed., 50, 5217 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.University of Illinois at ChicagoChicagoUSA

Personalised recommendations